Mon Aug 31 12:30:13 2015

Asterisk developer's documentation


udptl.c

Go to the documentation of this file.
00001 /*
00002  * Asterisk -- A telephony toolkit for Linux.
00003  *
00004  * UDPTL support for T.38
00005  * 
00006  * Copyright (C) 2005, Steve Underwood, partly based on RTP code which is
00007  * Copyright (C) 1999-2009, Digium, Inc.
00008  *
00009  * Steve Underwood <steveu@coppice.org>
00010  * Kevin P. Fleming <kpfleming@digium.com>
00011  *
00012  * See http://www.asterisk.org for more information about
00013  * the Asterisk project. Please do not directly contact
00014  * any of the maintainers of this project for assistance;
00015  * the project provides a web site, mailing lists and IRC
00016  * channels for your use.
00017  *
00018  * This program is free software, distributed under the terms of
00019  * the GNU General Public License Version 2. See the LICENSE file
00020  * at the top of the source tree.
00021  *
00022  * A license has been granted to Digium (via disclaimer) for the use of
00023  * this code.
00024  */
00025 
00026 /*! 
00027  * \file 
00028  *
00029  * \brief UDPTL support for T.38 faxing
00030  * 
00031  *
00032  * \author Mark Spencer <markster@digium.com>
00033  * \author Steve Underwood <steveu@coppice.org>
00034  * \author Kevin P. Fleming <kpfleming@digium.com>
00035  * 
00036  * \page T38fax_udptl T.38 support :: UDPTL
00037  *
00038  * Asterisk supports T.38 fax passthrough, origination and termination. It does
00039  * not support gateway operation. The only channel driver that supports T.38 at
00040  * this time is chan_sip.
00041  *
00042  * UDPTL is handled very much like RTP. It can be reinvited to go directly between
00043  * the endpoints, without involving Asterisk in the media stream.
00044  * 
00045  * \b References:
00046  * - chan_sip.c
00047  * - udptl.c
00048  * - app_fax.c
00049  */
00050 
00051 /*** MODULEINFO
00052    <support_level>core</support_level>
00053  ***/
00054 
00055 #include "asterisk.h"
00056 
00057 ASTERISK_FILE_VERSION(__FILE__, "$Revision: 417318 $")
00058 
00059 #include <sys/time.h>
00060 #include <signal.h>
00061 #include <fcntl.h>
00062 
00063 #include "asterisk/udptl.h"
00064 #include "asterisk/frame.h"
00065 #include "asterisk/channel.h"
00066 #include "asterisk/acl.h"
00067 #include "asterisk/config.h"
00068 #include "asterisk/lock.h"
00069 #include "asterisk/utils.h"
00070 #include "asterisk/netsock.h"
00071 #include "asterisk/cli.h"
00072 #include "asterisk/unaligned.h"
00073 
00074 #define UDPTL_MTU    1200
00075 
00076 #if !defined(FALSE)
00077 #define FALSE 0
00078 #endif
00079 #if !defined(TRUE)
00080 #define TRUE (!FALSE)
00081 #endif
00082 
00083 #define LOG_TAG(u) S_OR(u->tag, "no tag")
00084 
00085 static int udptlstart = 4500;
00086 static int udptlend = 4599;
00087 static int udptldebug;                      /*!< Are we debugging? */
00088 static struct ast_sockaddr udptldebugaddr;   /*!< Debug packets to/from this host */
00089 #ifdef SO_NO_CHECK
00090 static int nochecksums;
00091 #endif
00092 static int udptlfecentries;
00093 static int udptlfecspan;
00094 static int use_even_ports;
00095 
00096 #define LOCAL_FAX_MAX_DATAGRAM      1400
00097 #define DEFAULT_FAX_MAX_DATAGRAM    400
00098 #define FAX_MAX_DATAGRAM_LIMIT      1400
00099 #define MAX_FEC_ENTRIES             5
00100 #define MAX_FEC_SPAN                5
00101 
00102 #define UDPTL_BUF_MASK              15
00103 
00104 typedef struct {
00105    int buf_len;
00106    uint8_t buf[LOCAL_FAX_MAX_DATAGRAM];
00107 } udptl_fec_tx_buffer_t;
00108 
00109 typedef struct {
00110    int buf_len;
00111    uint8_t buf[LOCAL_FAX_MAX_DATAGRAM];
00112    unsigned int fec_len[MAX_FEC_ENTRIES];
00113    uint8_t fec[MAX_FEC_ENTRIES][LOCAL_FAX_MAX_DATAGRAM];
00114    unsigned int fec_span;
00115    unsigned int fec_entries;
00116 } udptl_fec_rx_buffer_t;
00117 
00118 /*! \brief Structure for an UDPTL session */
00119 struct ast_udptl {
00120    int fd;
00121    char resp;
00122    struct ast_frame f[16];
00123    unsigned char rawdata[8192 + AST_FRIENDLY_OFFSET];
00124    unsigned int lasteventseqn;
00125    int nat;
00126    int flags;
00127    struct ast_sockaddr us;
00128    struct ast_sockaddr them;
00129    int *ioid;
00130    struct sched_context *sched;
00131    struct io_context *io;
00132    void *data;
00133    char *tag;
00134    ast_udptl_callback callback;
00135 
00136    /*! This option indicates the error correction scheme used in transmitted UDPTL
00137     * packets and expected in received UDPTL packets.
00138     */
00139    enum ast_t38_ec_modes error_correction_scheme;
00140 
00141    /*! This option indicates the number of error correction entries transmitted in
00142     * UDPTL packets and expected in received UDPTL packets.
00143     */
00144    unsigned int error_correction_entries;
00145 
00146    /*! This option indicates the span of the error correction entries in transmitted
00147     * UDPTL packets (FEC only).
00148     */
00149    unsigned int error_correction_span;
00150 
00151    /*! The maximum size UDPTL packet that can be accepted by
00152     * the remote device.
00153     */
00154    int far_max_datagram;
00155 
00156    /*! The maximum size UDPTL packet that we are prepared to
00157     * accept, or -1 if it hasn't been calculated since the last
00158     * changes were applied to the UDPTL structure.
00159     */
00160    int local_max_datagram;
00161 
00162    /*! The maximum IFP that can be submitted for sending
00163     * to the remote device. Calculated from far_max_datagram,
00164     * error_correction_scheme and error_correction_entries,
00165     * or -1 if it hasn't been calculated since the last
00166     * changes were applied to the UDPTL structure.
00167     */
00168    int far_max_ifp;
00169 
00170    /*! The maximum IFP that the local endpoint is prepared
00171     * to accept. Along with error_correction_scheme and
00172     * error_correction_entries, used to calculate local_max_datagram.
00173     */
00174    int local_max_ifp;
00175 
00176    unsigned int tx_seq_no;
00177    unsigned int rx_seq_no;
00178 
00179    udptl_fec_tx_buffer_t tx[UDPTL_BUF_MASK + 1];
00180    udptl_fec_rx_buffer_t rx[UDPTL_BUF_MASK + 1];
00181 };
00182 
00183 static AST_RWLIST_HEAD_STATIC(protos, ast_udptl_protocol);
00184 
00185 static inline int udptl_debug_test_addr(const struct ast_sockaddr *addr)
00186 {
00187    if (udptldebug == 0)
00188       return 0;
00189 
00190    if (ast_sockaddr_isnull(&udptldebugaddr)) {
00191       return 1;
00192    }
00193 
00194    if (ast_sockaddr_port(&udptldebugaddr)) {
00195       return !ast_sockaddr_cmp(&udptldebugaddr, addr);
00196    } else {
00197       return !ast_sockaddr_cmp_addr(&udptldebugaddr, addr);
00198    }
00199 }
00200 
00201 static int decode_length(uint8_t *buf, unsigned int limit, unsigned int *len, unsigned int *pvalue)
00202 {
00203    if (*len >= limit)
00204       return -1;
00205    if ((buf[*len] & 0x80) == 0) {
00206       *pvalue = buf[*len];
00207       (*len)++;
00208       return 0;
00209    }
00210    if ((buf[*len] & 0x40) == 0) {
00211       if (*len == limit - 1)
00212          return -1;
00213       *pvalue = (buf[*len] & 0x3F) << 8;
00214       (*len)++;
00215       *pvalue |= buf[*len];
00216       (*len)++;
00217       return 0;
00218    }
00219    *pvalue = (buf[*len] & 0x3F) << 14;
00220    (*len)++;
00221    /* We have a fragment.  Currently we don't process fragments. */
00222    ast_debug(1, "UDPTL packet with length greater than 16K received, decoding will fail\n");
00223    return 1;
00224 }
00225 /*- End of function --------------------------------------------------------*/
00226 
00227 static int decode_open_type(uint8_t *buf, unsigned int limit, unsigned int *len, const uint8_t **p_object, unsigned int *p_num_octets)
00228 {
00229    unsigned int octet_cnt = 0;
00230 
00231    if (decode_length(buf, limit, len, &octet_cnt) != 0)
00232       return -1;
00233 
00234    if (octet_cnt > 0) {
00235       /* Make sure the buffer contains at least the number of bits requested */
00236       if ((*len + octet_cnt) > limit)
00237          return -1;
00238 
00239       *p_num_octets = octet_cnt;
00240       *p_object = &buf[*len];
00241       *len += octet_cnt;
00242    }
00243 
00244    return 0;
00245 }
00246 /*- End of function --------------------------------------------------------*/
00247 
00248 static unsigned int encode_length(uint8_t *buf, unsigned int *len, unsigned int value)
00249 {
00250    unsigned int multiplier;
00251 
00252    if (value < 0x80) {
00253       /* 1 octet */
00254       buf[*len] = value;
00255       (*len)++;
00256       return value;
00257    }
00258    if (value < 0x4000) {
00259       /* 2 octets */
00260       /* Set the first bit of the first octet */
00261       buf[*len] = ((0x8000 | value) >> 8) & 0xFF;
00262       (*len)++;
00263       buf[*len] = value & 0xFF;
00264       (*len)++;
00265       return value;
00266    }
00267    /* Fragmentation */
00268    multiplier = (value < 0x10000) ? (value >> 14) : 4;
00269    /* Set the first 2 bits of the octet */
00270    buf[*len] = 0xC0 | multiplier;
00271    (*len)++;
00272    return multiplier << 14;
00273 }
00274 /*- End of function --------------------------------------------------------*/
00275 
00276 static int encode_open_type(const struct ast_udptl *udptl, uint8_t *buf, unsigned int buflen,
00277              unsigned int *len, const uint8_t *data, unsigned int num_octets)
00278 {
00279    unsigned int enclen;
00280    unsigned int octet_idx;
00281    uint8_t zero_byte;
00282 
00283    /* If open type is of zero length, add a single zero byte (10.1) */
00284    if (num_octets == 0) {
00285       zero_byte = 0;
00286       data = &zero_byte;
00287       num_octets = 1;
00288    }
00289    /* Encode the open type */
00290    for (octet_idx = 0; ; num_octets -= enclen, octet_idx += enclen) {
00291       if ((enclen = encode_length(buf, len, num_octets)) < 0)
00292          return -1;
00293       if (enclen + *len > buflen) {
00294          ast_log(LOG_ERROR, "UDPTL (%s): Buffer overflow detected (%u + %u > %u)\n",
00295             LOG_TAG(udptl), enclen, *len, buflen);
00296          return -1;
00297       }
00298       if (enclen > 0) {
00299          memcpy(&buf[*len], &data[octet_idx], enclen);
00300          *len += enclen;
00301       }
00302       if (enclen >= num_octets)
00303          break;
00304    }
00305 
00306    return 0;
00307 }
00308 /*- End of function --------------------------------------------------------*/
00309 
00310 static int udptl_rx_packet(struct ast_udptl *s, uint8_t *buf, unsigned int len)
00311 {
00312    int stat1;
00313    int stat2;
00314    int i;
00315    unsigned int ptr; /* an index that keeps track of how much of the UDPTL packet has been processed */
00316    int seq_no;
00317    const uint8_t *ifp = NULL;
00318    const uint8_t *data = NULL;
00319    unsigned int ifp_len = 0;
00320    int repaired[16];
00321    const uint8_t *bufs[ARRAY_LEN(s->f) - 1];
00322    unsigned int lengths[ARRAY_LEN(s->f) - 1];
00323    int span;
00324    int entries;
00325    int ifp_no;
00326 
00327    ptr = 0;
00328    ifp_no = 0;
00329    memset(&s->f[0], 0, sizeof(s->f[0]));
00330 
00331    /* Decode seq_number */
00332    if (ptr + 2 > len)
00333       return -1;
00334    seq_no = (buf[0] << 8) | buf[1];
00335    ptr += 2;
00336 
00337    /* Break out the primary packet */
00338    if ((stat1 = decode_open_type(buf, len, &ptr, &ifp, &ifp_len)) != 0)
00339       return -1;
00340    /* Decode error_recovery */
00341    if (ptr + 1 > len)
00342       return -1;
00343    if ((buf[ptr++] & 0x80) == 0) {
00344       /* Secondary packet mode for error recovery */
00345       if (seq_no > s->rx_seq_no) {
00346          /* We received a later packet than we expected, so we need to check if we can fill in the gap from the
00347             secondary packets. */
00348          int total_count = 0;
00349          do {
00350             unsigned int count;
00351             if ((stat2 = decode_length(buf, len, &ptr, &count)) < 0)
00352                return -1;
00353             for (i = 0; i < count && total_count + i < ARRAY_LEN(bufs); i++) {
00354                if ((stat1 = decode_open_type(buf, len, &ptr, &bufs[total_count + i], &lengths[total_count + i])) != 0) {
00355                   return -1;
00356                }
00357                /* valid secondaries can contain zero-length packets that should be ignored */
00358                if (!bufs[total_count + i] || !lengths[total_count + i]) {
00359                   /* drop the count of items to process and reuse the buffers that were just set */
00360                   i--;
00361                   count--;
00362                }
00363             }
00364             total_count += i;
00365          }
00366          while (stat2 > 0 && total_count < ARRAY_LEN(bufs));
00367          /* Step through in reverse order, so we go oldest to newest */
00368          for (i = total_count; i > 0; i--) {
00369             if (seq_no - i >= s->rx_seq_no) {
00370                /* This one wasn't seen before */
00371                /* Decode the secondary IFP packet */
00372                ast_debug(3, "Recovering lost packet via secondary %d, len %u\n", seq_no - i, lengths[i - 1]);
00373                s->f[ifp_no].frametype = AST_FRAME_MODEM;
00374                s->f[ifp_no].subclass.codec = AST_MODEM_T38;
00375 
00376                s->f[ifp_no].mallocd = 0;
00377                s->f[ifp_no].seqno = seq_no - i;
00378                s->f[ifp_no].datalen = lengths[i - 1];
00379                s->f[ifp_no].data.ptr = (uint8_t *) bufs[i - 1];
00380                s->f[ifp_no].offset = 0;
00381                s->f[ifp_no].src = "UDPTL";
00382                if (ifp_no > 0)
00383                   AST_LIST_NEXT(&s->f[ifp_no - 1], frame_list) = &s->f[ifp_no];
00384                AST_LIST_NEXT(&s->f[ifp_no], frame_list) = NULL;
00385                ifp_no++;
00386             }
00387          }
00388       }
00389    }
00390    else
00391    {
00392       int j;
00393       int l;
00394       int x;
00395       /* FEC mode for error recovery */
00396       /* Our buffers cannot tolerate overlength IFP packets in FEC mode */
00397       if (ifp_len > LOCAL_FAX_MAX_DATAGRAM)
00398          return -1;
00399       /* Update any missed slots in the buffer */
00400       for ( ; seq_no > s->rx_seq_no; s->rx_seq_no++) {
00401          x = s->rx_seq_no & UDPTL_BUF_MASK;
00402          s->rx[x].buf_len = -1;
00403          s->rx[x].fec_len[0] = 0;
00404          s->rx[x].fec_span = 0;
00405          s->rx[x].fec_entries = 0;
00406       }
00407 
00408       x = seq_no & UDPTL_BUF_MASK;
00409 
00410       memset(repaired, 0, sizeof(repaired));
00411 
00412       /* Save the new IFP packet */
00413       memcpy(s->rx[x].buf, ifp, ifp_len);
00414       s->rx[x].buf_len = ifp_len;
00415       repaired[x] = TRUE;
00416 
00417       /* Decode the FEC packets */
00418       /* The span is defined as an unconstrained integer, but will never be more
00419          than a small value. */
00420       if (ptr + 2 > len)
00421          return -1;
00422       if (buf[ptr++] != 1)
00423          return -1;
00424       span = buf[ptr++];
00425       s->rx[x].fec_span = span;
00426 
00427       /* The number of entries is defined as a length, but will only ever be a small
00428          value. Treat it as such. */
00429       if (ptr + 1 > len)
00430          return -1;
00431       entries = buf[ptr++];
00432       if (entries > MAX_FEC_ENTRIES) {
00433          return -1;
00434       }
00435       s->rx[x].fec_entries = entries;
00436 
00437       /* Decode the elements */
00438       for (i = 0; i < entries; i++) {
00439          if ((stat1 = decode_open_type(buf, len, &ptr, &data, &s->rx[x].fec_len[i])) != 0)
00440             return -1;
00441          if (s->rx[x].fec_len[i] > LOCAL_FAX_MAX_DATAGRAM)
00442             return -1;
00443 
00444          /* Save the new FEC data */
00445          memcpy(s->rx[x].fec[i], data, s->rx[x].fec_len[i]);
00446 #if 0
00447          fprintf(stderr, "FEC: ");
00448          for (j = 0; j < s->rx[x].fec_len[i]; j++)
00449             fprintf(stderr, "%02X ", data[j]);
00450          fprintf(stderr, "\n");
00451 #endif
00452       }
00453 
00454       /* See if we can reconstruct anything which is missing */
00455       /* TODO: this does not comprehensively hunt back and repair everything that is possible */
00456       for (l = x; l != ((x - (16 - span*entries)) & UDPTL_BUF_MASK); l = (l - 1) & UDPTL_BUF_MASK) {
00457          int m;
00458          if (s->rx[l].fec_len[0] <= 0)
00459             continue;
00460          for (m = 0; m < s->rx[l].fec_entries; m++) {
00461             int k;
00462             int which;
00463             int limit = (l + m) & UDPTL_BUF_MASK;
00464 
00465             /* only repair buffers that actually exist! */
00466             if (seq_no <= (s->rx[l].fec_span * s->rx[l].fec_entries) - m) {
00467                continue;
00468             }
00469 
00470             for (which = -1, k = (limit - s->rx[l].fec_span * s->rx[l].fec_entries) & UDPTL_BUF_MASK; k != limit; k = (k + s->rx[l].fec_entries) & UDPTL_BUF_MASK) {
00471                if (s->rx[k].buf_len <= 0)
00472                   which = (which == -1) ? k : -2;
00473             }
00474             if (which >= 0) {
00475                /* Repairable */
00476                for (j = 0; j < s->rx[l].fec_len[m]; j++) {
00477                   s->rx[which].buf[j] = s->rx[l].fec[m][j];
00478                   for (k = (limit - s->rx[l].fec_span * s->rx[l].fec_entries) & UDPTL_BUF_MASK; k != limit; k = (k + s->rx[l].fec_entries) & UDPTL_BUF_MASK)
00479                      s->rx[which].buf[j] ^= (s->rx[k].buf_len > j) ? s->rx[k].buf[j] : 0;
00480                }
00481                s->rx[which].buf_len = s->rx[l].fec_len[m];
00482                repaired[which] = TRUE;
00483             }
00484          }
00485       }
00486       /* Now play any new packets forwards in time */
00487       for (l = (x + 1) & UDPTL_BUF_MASK, j = seq_no - UDPTL_BUF_MASK; l != x; l = (l + 1) & UDPTL_BUF_MASK, j++) {
00488          if (repaired[l]) {
00489             //fprintf(stderr, "Fixed packet %d, len %d\n", j, l);
00490             s->f[ifp_no].frametype = AST_FRAME_MODEM;
00491             s->f[ifp_no].subclass.codec = AST_MODEM_T38;
00492          
00493             s->f[ifp_no].mallocd = 0;
00494             s->f[ifp_no].seqno = j;
00495             s->f[ifp_no].datalen = s->rx[l].buf_len;
00496             s->f[ifp_no].data.ptr = s->rx[l].buf;
00497             s->f[ifp_no].offset = 0;
00498             s->f[ifp_no].src = "UDPTL";
00499             if (ifp_no > 0)
00500                AST_LIST_NEXT(&s->f[ifp_no - 1], frame_list) = &s->f[ifp_no];
00501             AST_LIST_NEXT(&s->f[ifp_no], frame_list) = NULL;
00502             ifp_no++;
00503          }
00504       }
00505    }
00506 
00507    /* If packets are received out of sequence, we may have already processed this packet from the error
00508       recovery information in a packet already received. */
00509    if (seq_no >= s->rx_seq_no) {
00510       /* Decode the primary IFP packet */
00511       s->f[ifp_no].frametype = AST_FRAME_MODEM;
00512       s->f[ifp_no].subclass.codec = AST_MODEM_T38;
00513       
00514       s->f[ifp_no].mallocd = 0;
00515       s->f[ifp_no].seqno = seq_no;
00516       s->f[ifp_no].datalen = ifp_len;
00517       s->f[ifp_no].data.ptr = (uint8_t *) ifp;
00518       s->f[ifp_no].offset = 0;
00519       s->f[ifp_no].src = "UDPTL";
00520       if (ifp_no > 0)
00521          AST_LIST_NEXT(&s->f[ifp_no - 1], frame_list) = &s->f[ifp_no];
00522       AST_LIST_NEXT(&s->f[ifp_no], frame_list) = NULL;
00523 
00524       ifp_no++;
00525    }
00526 
00527    s->rx_seq_no = seq_no + 1;
00528    return ifp_no;
00529 }
00530 /*- End of function --------------------------------------------------------*/
00531 
00532 static int udptl_build_packet(struct ast_udptl *s, uint8_t *buf, unsigned int buflen, uint8_t *ifp, unsigned int ifp_len)
00533 {
00534    uint8_t fec[LOCAL_FAX_MAX_DATAGRAM * 2] = { 0, };
00535    int i;
00536    int j;
00537    int seq;
00538    int entry;
00539    int entries;
00540    int span;
00541    int m;
00542    unsigned int len;
00543    int limit;
00544    int high_tide;
00545 
00546    seq = s->tx_seq_no & 0xFFFF;
00547 
00548    /* Map the sequence number to an entry in the circular buffer */
00549    entry = seq & UDPTL_BUF_MASK;
00550 
00551    /* We save the message in a circular buffer, for generating FEC or
00552       redundancy sets later on. */
00553    s->tx[entry].buf_len = ifp_len;
00554    memcpy(s->tx[entry].buf, ifp, ifp_len);
00555    
00556    /* Build the UDPTLPacket */
00557 
00558    len = 0;
00559    /* Encode the sequence number */
00560    buf[len++] = (seq >> 8) & 0xFF;
00561    buf[len++] = seq & 0xFF;
00562 
00563    /* Encode the primary IFP packet */
00564    if (encode_open_type(s, buf, buflen, &len, ifp, ifp_len) < 0)
00565       return -1;
00566 
00567    /* Encode the appropriate type of error recovery information */
00568    switch (s->error_correction_scheme)
00569    {
00570    case UDPTL_ERROR_CORRECTION_NONE:
00571       /* Encode the error recovery type */
00572       buf[len++] = 0x00;
00573       /* The number of entries will always be zero, so it is pointless allowing
00574          for the fragmented case here. */
00575       if (encode_length(buf, &len, 0) < 0)
00576          return -1;
00577       break;
00578    case UDPTL_ERROR_CORRECTION_REDUNDANCY:
00579       /* Encode the error recovery type */
00580       buf[len++] = 0x00;
00581       if (s->tx_seq_no > s->error_correction_entries)
00582          entries = s->error_correction_entries;
00583       else
00584          entries = s->tx_seq_no;
00585       /* The number of entries will always be small, so it is pointless allowing
00586          for the fragmented case here. */
00587       if (encode_length(buf, &len, entries) < 0)
00588          return -1;
00589       /* Encode the elements */
00590       for (i = 0; i < entries; i++) {
00591          j = (entry - i - 1) & UDPTL_BUF_MASK;
00592          if (encode_open_type(s, buf, buflen, &len, s->tx[j].buf, s->tx[j].buf_len) < 0) {
00593             ast_debug(1, "UDPTL (%s): Encoding failed at i=%d, j=%d\n",
00594                  LOG_TAG(s), i, j);
00595             return -1;
00596          }
00597       }
00598       break;
00599    case UDPTL_ERROR_CORRECTION_FEC:
00600       span = s->error_correction_span;
00601       entries = s->error_correction_entries;
00602       if (seq < s->error_correction_span*s->error_correction_entries) {
00603          /* In the initial stages, wind up the FEC smoothly */
00604          entries = seq/s->error_correction_span;
00605          if (seq < s->error_correction_span)
00606             span = 0;
00607       }
00608       /* Encode the error recovery type */
00609       buf[len++] = 0x80;
00610       /* Span is defined as an inconstrained integer, which it dumb. It will only
00611          ever be a small value. Treat it as such. */
00612       buf[len++] = 1;
00613       buf[len++] = span;
00614       /* The number of entries is defined as a length, but will only ever be a small
00615          value. Treat it as such. */
00616       buf[len++] = entries;
00617       for (m = 0; m < entries; m++) {
00618          /* Make an XOR'ed entry the maximum length */
00619          limit = (entry + m) & UDPTL_BUF_MASK;
00620          high_tide = 0;
00621          for (i = (limit - span*entries) & UDPTL_BUF_MASK; i != limit; i = (i + entries) & UDPTL_BUF_MASK) {
00622             if (high_tide < s->tx[i].buf_len) {
00623                for (j = 0; j < high_tide; j++)
00624                   fec[j] ^= s->tx[i].buf[j];
00625                for ( ; j < s->tx[i].buf_len; j++)
00626                   fec[j] = s->tx[i].buf[j];
00627                high_tide = s->tx[i].buf_len;
00628             } else {
00629                for (j = 0; j < s->tx[i].buf_len; j++)
00630                   fec[j] ^= s->tx[i].buf[j];
00631             }
00632          }
00633          if (encode_open_type(s, buf, buflen, &len, fec, high_tide) < 0)
00634             return -1;
00635       }
00636       break;
00637    }
00638 
00639    s->tx_seq_no++;
00640    return len;
00641 }
00642 
00643 int ast_udptl_fd(const struct ast_udptl *udptl)
00644 {
00645    return udptl->fd;
00646 }
00647 
00648 void ast_udptl_set_data(struct ast_udptl *udptl, void *data)
00649 {
00650    udptl->data = data;
00651 }
00652 
00653 void ast_udptl_set_callback(struct ast_udptl *udptl, ast_udptl_callback callback)
00654 {
00655    udptl->callback = callback;
00656 }
00657 
00658 void ast_udptl_setnat(struct ast_udptl *udptl, int nat)
00659 {
00660    udptl->nat = nat;
00661 }
00662 
00663 static int udptlread(int *id, int fd, short events, void *cbdata)
00664 {
00665    struct ast_udptl *udptl = cbdata;
00666    struct ast_frame *f;
00667 
00668    if ((f = ast_udptl_read(udptl))) {
00669       if (udptl->callback)
00670          udptl->callback(udptl, f, udptl->data);
00671    }
00672    return 1;
00673 }
00674 
00675 struct ast_frame *ast_udptl_read(struct ast_udptl *udptl)
00676 {
00677    int res;
00678    struct ast_sockaddr addr;
00679    uint8_t *buf;
00680 
00681    buf = udptl->rawdata + AST_FRIENDLY_OFFSET;
00682 
00683    /* Cache where the header will go */
00684    res = ast_recvfrom(udptl->fd,
00685          buf,
00686          sizeof(udptl->rawdata) - AST_FRIENDLY_OFFSET,
00687          0,
00688          &addr);
00689    if (res < 0) {
00690       if (errno != EAGAIN)
00691          ast_log(LOG_WARNING, "UDPTL (%s): read error: %s\n",
00692             LOG_TAG(udptl), strerror(errno));
00693       ast_assert(errno != EBADF);
00694       return &ast_null_frame;
00695    }
00696 
00697    /* Ignore if the other side hasn't been given an address yet. */
00698    if (ast_sockaddr_isnull(&udptl->them)) {
00699       return &ast_null_frame;
00700    }
00701 
00702    if (udptl->nat) {
00703       /* Send to whoever sent to us */
00704       if (ast_sockaddr_cmp(&udptl->them, &addr)) {
00705          ast_sockaddr_copy(&udptl->them, &addr);
00706          ast_debug(1, "UDPTL (%s): NAT, Using address %s\n",
00707               LOG_TAG(udptl), ast_sockaddr_stringify(&udptl->them));
00708       }
00709    }
00710 
00711    if (udptl_debug_test_addr(&addr)) {
00712       int seq_no;
00713 
00714       /* Decode sequence number just for verbose message. */
00715       if (res < 2) {
00716          /* Short packet. */
00717          seq_no = -1;
00718       } else {
00719          seq_no = (buf[0] << 8) | buf[1];
00720       }
00721 
00722       ast_verb(1, "UDPTL (%s): packet from %s (seq %d, len %d)\n",
00723          LOG_TAG(udptl), ast_sockaddr_stringify(&addr), seq_no, res);
00724    }
00725    if (udptl_rx_packet(udptl, buf, res) < 1) {
00726       return &ast_null_frame;
00727    }
00728 
00729    return &udptl->f[0];
00730 }
00731 
00732 static void calculate_local_max_datagram(struct ast_udptl *udptl)
00733 {
00734    unsigned int new_max = 0;
00735 
00736    if (udptl->local_max_ifp == -1) {
00737       ast_log(LOG_WARNING, "UDPTL (%s): Cannot calculate local_max_datagram before local_max_ifp has been set.\n",
00738          LOG_TAG(udptl));
00739       udptl->local_max_datagram = -1;
00740       return;
00741    }
00742 
00743    /* calculate the amount of space required to receive an IFP
00744     * of the maximum size supported by the application/endpoint
00745     * that we are delivering them to (local endpoint), and add
00746     * the amount of space required to support the selected
00747     * error correction mode
00748     */
00749    switch (udptl->error_correction_scheme) {
00750    case UDPTL_ERROR_CORRECTION_NONE:
00751       /* need room for sequence number, length indicator, redundancy
00752        * indicator and following length indicator
00753        */
00754       new_max = 5 + udptl->local_max_ifp;
00755       break;
00756    case UDPTL_ERROR_CORRECTION_REDUNDANCY:
00757       /* need room for sequence number, length indicators, plus
00758        * room for up to 3 redundancy packets
00759        */
00760       new_max = 5 + udptl->local_max_ifp + 2 + (3 * udptl->local_max_ifp);
00761       break;
00762    case UDPTL_ERROR_CORRECTION_FEC:
00763       /* need room for sequence number, length indicators and a
00764        * a single IFP of the maximum size expected
00765        */
00766       new_max = 5 + udptl->local_max_ifp + 4 + udptl->local_max_ifp;
00767       break;
00768    }
00769    /* add 5% extra space for insurance, but no larger than LOCAL_FAX_MAX_DATAGRAM */
00770    udptl->local_max_datagram = MIN(new_max * 1.05, LOCAL_FAX_MAX_DATAGRAM);
00771 }
00772 
00773 static void calculate_far_max_ifp(struct ast_udptl *udptl)
00774 {
00775    unsigned new_max = 0;
00776 
00777    if (udptl->far_max_datagram == -1) {
00778       ast_log(LOG_WARNING, "UDPTL (%s): Cannot calculate far_max_ifp before far_max_datagram has been set.\n",
00779          LOG_TAG(udptl));
00780       udptl->far_max_ifp = -1;
00781       return;
00782    }
00783 
00784    /* the goal here is to supply the local endpoint (application
00785     * or bridged channel) a maximum IFP value that will allow it
00786     * to effectively and efficiently transfer image data at its
00787     * selected bit rate, taking into account the selected error
00788     * correction mode, but without overrunning the far endpoint's
00789     * datagram buffer. this is complicated by the fact that some
00790     * far endpoints send us bogus (small) max datagram values,
00791     * which would result in either buffer overrun or no error
00792     * correction. we try to accomodate those, but if the supplied
00793     * value is too small to do so, we'll emit warning messages and
00794     * the user will have to use configuration options to override
00795     * the max datagram value supplied by the far endpoint.
00796     */
00797    switch (udptl->error_correction_scheme) {
00798    case UDPTL_ERROR_CORRECTION_NONE:
00799       /* need room for sequence number, length indicator, redundancy
00800        * indicator and following length indicator
00801        */
00802       new_max = udptl->far_max_datagram - 5;
00803       break;
00804    case UDPTL_ERROR_CORRECTION_REDUNDANCY:
00805       /* for this case, we'd like to send as many error correction entries
00806        * as possible (up to the number we're configured for), but we'll settle
00807        * for sending fewer if the configured number would cause the
00808        * calculated max IFP to be too small for effective operation
00809        *
00810        * need room for sequence number, length indicators and the
00811        * configured number of redundant packets
00812        *
00813        * note: we purposely don't allow error_correction_entries to drop to
00814        * zero in this loop; we'd rather send smaller IFPs (and thus reduce
00815        * the image data transfer rate) than sacrifice redundancy completely
00816        */
00817       for (;;) {
00818          new_max = (udptl->far_max_datagram - 8) / (udptl->error_correction_entries + 1);
00819 
00820          if ((new_max < 80) && (udptl->error_correction_entries > 1)) {
00821             /* the max ifp is not large enough, subtract an
00822              * error correction entry and calculate again
00823              * */
00824             --udptl->error_correction_entries;
00825          } else {
00826             break;
00827          }
00828       }
00829       break;
00830    case UDPTL_ERROR_CORRECTION_FEC:
00831       /* need room for sequence number, length indicators and a
00832        * a single IFP of the maximum size expected
00833        */
00834       new_max = (udptl->far_max_datagram - 10) / 2;
00835       break;
00836    }
00837    /* subtract 5% of space for insurance */
00838    udptl->far_max_ifp = new_max * 0.95;
00839 }
00840 
00841 enum ast_t38_ec_modes ast_udptl_get_error_correction_scheme(const struct ast_udptl *udptl)
00842 {
00843    return udptl->error_correction_scheme;
00844 }
00845 
00846 void ast_udptl_set_error_correction_scheme(struct ast_udptl *udptl, enum ast_t38_ec_modes ec)
00847 {
00848    udptl->error_correction_scheme = ec;
00849    switch (ec) {
00850    case UDPTL_ERROR_CORRECTION_FEC:
00851       udptl->error_correction_scheme = UDPTL_ERROR_CORRECTION_FEC;
00852       if (udptl->error_correction_entries == 0) {
00853          udptl->error_correction_entries = 3;
00854       }
00855       if (udptl->error_correction_span == 0) {
00856          udptl->error_correction_span = 3;
00857       }
00858       break;
00859    case UDPTL_ERROR_CORRECTION_REDUNDANCY:
00860       udptl->error_correction_scheme = UDPTL_ERROR_CORRECTION_REDUNDANCY;
00861       if (udptl->error_correction_entries == 0) {
00862          udptl->error_correction_entries = 3;
00863       }
00864       break;
00865    default:
00866       /* nothing to do */
00867       break;
00868    };
00869    /* reset calculated values so they'll be computed again */
00870    udptl->local_max_datagram = -1;
00871    udptl->far_max_ifp = -1;
00872 }
00873 
00874 void ast_udptl_set_local_max_ifp(struct ast_udptl *udptl, unsigned int max_ifp)
00875 {
00876    /* make sure max_ifp is a positive value since a cast will take place when
00877     * when setting local_max_ifp */
00878    if ((signed int) max_ifp > 0) {
00879       udptl->local_max_ifp = max_ifp;
00880       /* reset calculated values so they'll be computed again */
00881       udptl->local_max_datagram = -1;
00882    }
00883 }
00884 
00885 unsigned int ast_udptl_get_local_max_datagram(struct ast_udptl *udptl)
00886 {
00887    if (udptl->local_max_datagram == -1) {
00888       calculate_local_max_datagram(udptl);
00889    }
00890 
00891    /* this function expects a unsigned value in return. */
00892    if (udptl->local_max_datagram < 0) {
00893       return 0;
00894    }
00895    return udptl->local_max_datagram;
00896 }
00897 
00898 void ast_udptl_set_far_max_datagram(struct ast_udptl *udptl, unsigned int max_datagram)
00899 {
00900    if (!max_datagram || (max_datagram > FAX_MAX_DATAGRAM_LIMIT)) {
00901       udptl->far_max_datagram = DEFAULT_FAX_MAX_DATAGRAM;
00902    } else {
00903       udptl->far_max_datagram = max_datagram;
00904    }
00905    /* reset calculated values so they'll be computed again */
00906    udptl->far_max_ifp = -1;
00907 }
00908 
00909 unsigned int ast_udptl_get_far_max_datagram(const struct ast_udptl *udptl)
00910 {
00911    if (udptl->far_max_datagram < 0) {
00912       return 0;
00913    }
00914    return udptl->far_max_datagram;
00915 }
00916 
00917 unsigned int ast_udptl_get_far_max_ifp(struct ast_udptl *udptl)
00918 {
00919    if (udptl->far_max_ifp == -1) {
00920       calculate_far_max_ifp(udptl);
00921    }
00922 
00923    if (udptl->far_max_ifp < 0) {
00924       return 0;
00925    }
00926    return udptl->far_max_ifp;
00927 }
00928 
00929 struct ast_udptl *ast_udptl_new_with_bindaddr(struct sched_context *sched, struct io_context *io, int callbackmode, struct ast_sockaddr *addr)
00930 {
00931    struct ast_udptl *udptl;
00932    int x;
00933    int startplace;
00934    int i;
00935    long int flags;
00936 
00937    if (!(udptl = ast_calloc(1, sizeof(*udptl))))
00938       return NULL;
00939 
00940    udptl->error_correction_span = udptlfecspan;
00941    udptl->error_correction_entries = udptlfecentries;
00942    
00943    udptl->far_max_datagram = -1;
00944    udptl->far_max_ifp = -1;
00945    udptl->local_max_ifp = -1;
00946    udptl->local_max_datagram = -1;
00947 
00948    for (i = 0; i <= UDPTL_BUF_MASK; i++) {
00949       udptl->rx[i].buf_len = -1;
00950       udptl->tx[i].buf_len = -1;
00951    }
00952 
00953    if ((udptl->fd = socket(ast_sockaddr_is_ipv6(addr) ?
00954                AF_INET6 : AF_INET, SOCK_DGRAM, 0)) < 0) {
00955       ast_free(udptl);
00956       ast_log(LOG_WARNING, "Unable to allocate socket: %s\n", strerror(errno));
00957       return NULL;
00958    }
00959    flags = fcntl(udptl->fd, F_GETFL);
00960    fcntl(udptl->fd, F_SETFL, flags | O_NONBLOCK);
00961 #ifdef SO_NO_CHECK
00962    if (nochecksums)
00963       setsockopt(udptl->fd, SOL_SOCKET, SO_NO_CHECK, &nochecksums, sizeof(nochecksums));
00964 #endif
00965    /* Find us a place */
00966    x = (udptlstart == udptlend) ? udptlstart : (ast_random() % (udptlend - udptlstart)) + udptlstart;
00967    if (use_even_ports && (x & 1)) {
00968       ++x;
00969    }
00970    startplace = x;
00971    for (;;) {
00972       ast_sockaddr_copy(&udptl->us, addr);
00973       ast_sockaddr_set_port(&udptl->us, x);
00974       if (ast_bind(udptl->fd, &udptl->us) == 0) {
00975          break;
00976       }
00977       if (errno != EADDRINUSE && errno != EACCES) {
00978          ast_log(LOG_WARNING, "Unexpected bind error: %s\n", strerror(errno));
00979          close(udptl->fd);
00980          ast_free(udptl);
00981          return NULL;
00982       }
00983       if (use_even_ports) {
00984          x += 2;
00985       } else {
00986          ++x;
00987       }
00988       if (x > udptlend)
00989          x = udptlstart;
00990       if (x == startplace) {
00991          ast_log(LOG_WARNING, "No UDPTL ports remaining\n");
00992          close(udptl->fd);
00993          ast_free(udptl);
00994          return NULL;
00995       }
00996    }
00997    if (io && sched && callbackmode) {
00998       /* Operate this one in a callback mode */
00999       udptl->sched = sched;
01000       udptl->io = io;
01001       udptl->ioid = ast_io_add(udptl->io, udptl->fd, udptlread, AST_IO_IN, udptl);
01002    }
01003    return udptl;
01004 }
01005 
01006 void ast_udptl_set_tag(struct ast_udptl *udptl, const char *format, ...)
01007 {
01008    va_list ap;
01009 
01010    ast_free(udptl->tag);
01011    udptl->tag = NULL;
01012    va_start(ap, format);
01013    if (ast_vasprintf(&udptl->tag, format, ap) == -1) {
01014       udptl->tag = NULL;
01015    }
01016    va_end(ap);
01017 }
01018 
01019 int ast_udptl_setqos(struct ast_udptl *udptl, unsigned int tos, unsigned int cos)
01020 {
01021    return ast_netsock_set_qos(udptl->fd, tos, cos, "UDPTL");
01022 }
01023 
01024 void ast_udptl_set_peer(struct ast_udptl *udptl, const struct ast_sockaddr *them)
01025 {
01026    ast_sockaddr_copy(&udptl->them, them);
01027 }
01028 
01029 void ast_udptl_get_peer(const struct ast_udptl *udptl, struct ast_sockaddr *them)
01030 {
01031    ast_sockaddr_copy(them, &udptl->them);
01032 }
01033 
01034 void ast_udptl_get_us(const struct ast_udptl *udptl, struct ast_sockaddr *us)
01035 {
01036    ast_sockaddr_copy(us, &udptl->us);
01037 }
01038 
01039 void ast_udptl_stop(struct ast_udptl *udptl)
01040 {
01041    ast_sockaddr_setnull(&udptl->them);
01042 }
01043 
01044 void ast_udptl_destroy(struct ast_udptl *udptl)
01045 {
01046    if (udptl->ioid)
01047       ast_io_remove(udptl->io, udptl->ioid);
01048    if (udptl->fd > -1)
01049       close(udptl->fd);
01050    if (udptl->tag)
01051       ast_free(udptl->tag);
01052    ast_free(udptl);
01053 }
01054 
01055 int ast_udptl_write(struct ast_udptl *s, struct ast_frame *f)
01056 {
01057    unsigned int seq;
01058    unsigned int len = f->datalen;
01059    int res;
01060    /* if no max datagram size is provided, use default value */
01061    const int bufsize = (s->far_max_datagram > 0) ? s->far_max_datagram : DEFAULT_FAX_MAX_DATAGRAM;
01062    uint8_t buf[bufsize];
01063 
01064    memset(buf, 0, sizeof(buf));
01065 
01066    /* If we have no peer, return immediately */
01067    if (ast_sockaddr_isnull(&s->them)) {
01068       return 0;
01069    }
01070 
01071    /* If there is no data length, return immediately */
01072    if (f->datalen == 0)
01073       return 0;
01074    
01075    if ((f->frametype != AST_FRAME_MODEM) ||
01076        (f->subclass.codec != AST_MODEM_T38)) {
01077       ast_log(LOG_WARNING, "UDPTL (%s): UDPTL can only send T.38 data.\n",
01078          LOG_TAG(s));
01079       return -1;
01080    }
01081 
01082    if (len > s->far_max_ifp) {
01083       ast_log(LOG_WARNING,
01084          "UDPTL (%s): UDPTL asked to send %u bytes of IFP when far end only prepared to accept %d bytes; data loss will occur."
01085          "You may need to override the T38FaxMaxDatagram value for this endpoint in the channel driver configuration.\n",
01086          LOG_TAG(s), len, s->far_max_ifp);
01087       len = s->far_max_ifp;
01088    }
01089 
01090    /* Save seq_no for debug output because udptl_build_packet increments it */
01091    seq = s->tx_seq_no & 0xFFFF;
01092 
01093    /* Cook up the UDPTL packet, with the relevant EC info. */
01094    len = udptl_build_packet(s, buf, sizeof(buf), f->data.ptr, len);
01095 
01096    if ((signed int) len > 0 && !ast_sockaddr_isnull(&s->them)) {
01097       if ((res = ast_sendto(s->fd, buf, len, 0, &s->them)) < 0)
01098          ast_log(LOG_NOTICE, "UDPTL (%s): Transmission error to %s: %s\n",
01099             LOG_TAG(s), ast_sockaddr_stringify(&s->them), strerror(errno));
01100       if (udptl_debug_test_addr(&s->them))
01101          ast_verb(1, "UDPTL (%s): packet to %s (seq %u, len %u)\n",
01102             LOG_TAG(s), ast_sockaddr_stringify(&s->them), seq, len);
01103    }
01104       
01105    return 0;
01106 }
01107 
01108 void ast_udptl_proto_unregister(struct ast_udptl_protocol *proto)
01109 {
01110    AST_RWLIST_WRLOCK(&protos);
01111    AST_RWLIST_REMOVE(&protos, proto, list);
01112    AST_RWLIST_UNLOCK(&protos);
01113 }
01114 
01115 int ast_udptl_proto_register(struct ast_udptl_protocol *proto)
01116 {
01117    struct ast_udptl_protocol *cur;
01118 
01119    AST_RWLIST_WRLOCK(&protos);
01120    AST_RWLIST_TRAVERSE(&protos, cur, list) {
01121       if (cur->type == proto->type) {
01122          ast_log(LOG_WARNING, "Tried to register same protocol '%s' twice\n", cur->type);
01123          AST_RWLIST_UNLOCK(&protos);
01124          return -1;
01125       }
01126    }
01127    AST_RWLIST_INSERT_TAIL(&protos, proto, list);
01128    AST_RWLIST_UNLOCK(&protos);
01129    return 0;
01130 }
01131 
01132 static struct ast_udptl_protocol *get_proto(struct ast_channel *chan)
01133 {
01134    struct ast_udptl_protocol *cur = NULL;
01135 
01136    AST_RWLIST_RDLOCK(&protos);
01137    AST_RWLIST_TRAVERSE(&protos, cur, list) {
01138       if (cur->type == chan->tech->type)
01139          break;
01140    }
01141    AST_RWLIST_UNLOCK(&protos);
01142 
01143    return cur;
01144 }
01145 
01146 int ast_udptl_bridge(struct ast_channel *c0, struct ast_channel *c1, int flags, struct ast_frame **fo, struct ast_channel **rc)
01147 {
01148    struct ast_frame *f;
01149    struct ast_channel *who;
01150    struct ast_channel *cs[3];
01151    struct ast_udptl *p0;
01152    struct ast_udptl *p1;
01153    struct ast_udptl_protocol *pr0;
01154    struct ast_udptl_protocol *pr1;
01155    struct ast_sockaddr ac0;
01156    struct ast_sockaddr ac1;
01157    struct ast_sockaddr t0;
01158    struct ast_sockaddr t1;
01159    void *pvt0;
01160    void *pvt1;
01161    int to;
01162    
01163    ast_channel_lock(c0);
01164    while (ast_channel_trylock(c1)) {
01165       ast_channel_unlock(c0);
01166       usleep(1);
01167       ast_channel_lock(c0);
01168    }
01169    pr0 = get_proto(c0);
01170    pr1 = get_proto(c1);
01171    if (!pr0) {
01172       ast_log(LOG_WARNING, "Can't find native functions for channel '%s'\n", c0->name);
01173       ast_channel_unlock(c0);
01174       ast_channel_unlock(c1);
01175       return -1;
01176    }
01177    if (!pr1) {
01178       ast_log(LOG_WARNING, "Can't find native functions for channel '%s'\n", c1->name);
01179       ast_channel_unlock(c0);
01180       ast_channel_unlock(c1);
01181       return -1;
01182    }
01183    pvt0 = c0->tech_pvt;
01184    pvt1 = c1->tech_pvt;
01185    p0 = pr0->get_udptl_info(c0);
01186    p1 = pr1->get_udptl_info(c1);
01187    if (!p0 || !p1) {
01188       /* Somebody doesn't want to play... */
01189       ast_channel_unlock(c0);
01190       ast_channel_unlock(c1);
01191       return -2;
01192    }
01193    if (pr0->set_udptl_peer(c0, p1)) {
01194       ast_log(LOG_WARNING, "Channel '%s' failed to talk to '%s'\n", c0->name, c1->name);
01195       memset(&ac1, 0, sizeof(ac1));
01196    } else {
01197       /* Store UDPTL peer */
01198       ast_udptl_get_peer(p1, &ac1);
01199    }
01200    if (pr1->set_udptl_peer(c1, p0)) {
01201       ast_log(LOG_WARNING, "Channel '%s' failed to talk back to '%s'\n", c1->name, c0->name);
01202       memset(&ac0, 0, sizeof(ac0));
01203    } else {
01204       /* Store UDPTL peer */
01205       ast_udptl_get_peer(p0, &ac0);
01206    }
01207    ast_channel_unlock(c0);
01208    ast_channel_unlock(c1);
01209    cs[0] = c0;
01210    cs[1] = c1;
01211    cs[2] = NULL;
01212    for (;;) {
01213       if ((c0->tech_pvt != pvt0) ||
01214          (c1->tech_pvt != pvt1) ||
01215          (c0->masq || c0->masqr || c1->masq || c1->masqr)) {
01216             ast_debug(1, "Oooh, something is weird, backing out\n");
01217             /* Tell it to try again later */
01218             return -3;
01219       }
01220       to = -1;
01221       ast_udptl_get_peer(p1, &t1);
01222       ast_udptl_get_peer(p0, &t0);
01223       if (ast_sockaddr_cmp(&t1, &ac1)) {
01224          ast_debug(1, "Oooh, '%s' changed end address to %s\n", 
01225             c1->name, ast_sockaddr_stringify(&t1));
01226          ast_debug(1, "Oooh, '%s' was %s\n", 
01227             c1->name, ast_sockaddr_stringify(&ac1));
01228          ast_sockaddr_copy(&ac1, &t1);
01229       }
01230       if (ast_sockaddr_cmp(&t0, &ac0)) {
01231          ast_debug(1, "Oooh, '%s' changed end address to %s\n", 
01232             c0->name, ast_sockaddr_stringify(&t0));
01233          ast_debug(1, "Oooh, '%s' was %s\n", 
01234             c0->name, ast_sockaddr_stringify(&ac0));
01235          ast_sockaddr_copy(&ac0, &t0);
01236       }
01237       who = ast_waitfor_n(cs, 2, &to);
01238       if (!who) {
01239          ast_debug(1, "Ooh, empty read...\n");
01240          /* check for hangup / whentohangup */
01241          if (ast_check_hangup(c0) || ast_check_hangup(c1))
01242             break;
01243          continue;
01244       }
01245       f = ast_read(who);
01246       if (!f) {
01247          *fo = f;
01248          *rc = who;
01249          ast_debug(1, "Oooh, got a %s\n", f ? "digit" : "hangup");
01250          /* That's all we needed */
01251          return 0;
01252       } else {
01253          if (f->frametype == AST_FRAME_MODEM) {
01254             /* Forward T.38 frames if they happen upon us */
01255             if (who == c0) {
01256                ast_write(c1, f);
01257             } else if (who == c1) {
01258                ast_write(c0, f);
01259             }
01260          }
01261          ast_frfree(f);
01262       }
01263       /* Swap priority. Not that it's a big deal at this point */
01264       cs[2] = cs[0];
01265       cs[0] = cs[1];
01266       cs[1] = cs[2];
01267    }
01268    return -1;
01269 }
01270 
01271 static char *handle_cli_udptl_set_debug(struct ast_cli_entry *e, int cmd, struct ast_cli_args *a)
01272 {
01273    switch (cmd) {
01274    case CLI_INIT:
01275       e->command = "udptl set debug {on|off|ip}";
01276       e->usage = 
01277          "Usage: udptl set debug {on|off|ip host[:port]}\n"
01278          "       Enable or disable dumping of UDPTL packets.\n"
01279          "       If ip is specified, limit the dumped packets to those to and from\n"
01280          "       the specified 'host' with optional port.\n";
01281       return NULL;
01282    case CLI_GENERATE:
01283       return NULL;
01284    }
01285 
01286    if (a->argc < 4 || a->argc > 5)
01287       return CLI_SHOWUSAGE;
01288 
01289    if (a->argc == 4) {
01290       if (!strncasecmp(a->argv[3], "on", 2)) {
01291          udptldebug = 1;
01292          memset(&udptldebugaddr, 0, sizeof(udptldebugaddr));
01293          ast_cli(a->fd, "UDPTL Debugging Enabled\n");
01294       } else if (!strncasecmp(a->argv[3], "off", 3)) {
01295          udptldebug = 0;
01296          ast_cli(a->fd, "UDPTL Debugging Disabled\n");
01297       } else {
01298          return CLI_SHOWUSAGE;
01299       }
01300    } else {
01301       struct ast_sockaddr *addrs;
01302       if (strncasecmp(a->argv[3], "ip", 2))
01303          return CLI_SHOWUSAGE;
01304       if (!ast_sockaddr_resolve(&addrs, a->argv[4], 0, 0)) {
01305          return CLI_SHOWUSAGE;
01306       }
01307       ast_sockaddr_copy(&udptldebugaddr, &addrs[0]);
01308          ast_cli(a->fd, "UDPTL Debugging Enabled for IP: %s\n", ast_sockaddr_stringify(&udptldebugaddr));
01309       udptldebug = 1;
01310       ast_free(addrs);
01311    }
01312 
01313    return CLI_SUCCESS;
01314 }
01315 
01316 
01317 static struct ast_cli_entry cli_udptl[] = {
01318    AST_CLI_DEFINE(handle_cli_udptl_set_debug, "Enable/Disable UDPTL debugging")
01319 };
01320 
01321 static void __ast_udptl_reload(int reload)
01322 {
01323    struct ast_config *cfg;
01324    const char *s;
01325    struct ast_flags config_flags = { reload ? CONFIG_FLAG_FILEUNCHANGED : 0 };
01326 
01327    cfg = ast_config_load2("udptl.conf", "udptl", config_flags);
01328    if (cfg == CONFIG_STATUS_FILEMISSING || cfg == CONFIG_STATUS_FILEUNCHANGED || cfg == CONFIG_STATUS_FILEINVALID) {
01329       return;
01330    }
01331 
01332    udptlstart = 4500;
01333    udptlend = 4999;
01334    udptlfecentries = 0;
01335    udptlfecspan = 0;
01336    use_even_ports = 0;
01337 
01338    if (cfg) {
01339       if ((s = ast_variable_retrieve(cfg, "general", "udptlstart"))) {
01340          udptlstart = atoi(s);
01341          if (udptlstart < 1024) {
01342             ast_log(LOG_WARNING, "Ports under 1024 are not allowed for T.38.\n");
01343             udptlstart = 1024;
01344          }
01345          if (udptlstart > 65535) {
01346             ast_log(LOG_WARNING, "Ports over 65535 are invalid.\n");
01347             udptlstart = 65535;
01348          }
01349       }
01350       if ((s = ast_variable_retrieve(cfg, "general", "udptlend"))) {
01351          udptlend = atoi(s);
01352          if (udptlend < 1024) {
01353             ast_log(LOG_WARNING, "Ports under 1024 are not allowed for T.38.\n");
01354             udptlend = 1024;
01355          }
01356          if (udptlend > 65535) {
01357             ast_log(LOG_WARNING, "Ports over 65535 are invalid.\n");
01358             udptlend = 65535;
01359          }
01360       }
01361       if ((s = ast_variable_retrieve(cfg, "general", "udptlchecksums"))) {
01362 #ifdef SO_NO_CHECK
01363          if (ast_false(s))
01364             nochecksums = 1;
01365          else
01366             nochecksums = 0;
01367 #else
01368          if (ast_false(s))
01369             ast_log(LOG_WARNING, "Disabling UDPTL checksums is not supported on this operating system!\n");
01370 #endif
01371       }
01372       if (ast_variable_retrieve(cfg, "general", "T38FaxUdpEC")) {
01373          ast_log(LOG_WARNING, "T38FaxUdpEC in udptl.conf is no longer supported; use the t38pt_udptl configuration option in sip.conf instead.\n");
01374       }
01375       if (ast_variable_retrieve(cfg, "general", "T38FaxMaxDatagram")) {
01376          ast_log(LOG_WARNING, "T38FaxMaxDatagram in udptl.conf is no longer supported; value is now supplied by T.38 applications.\n");
01377       }
01378       if ((s = ast_variable_retrieve(cfg, "general", "UDPTLFECEntries"))) {
01379          udptlfecentries = atoi(s);
01380          if (udptlfecentries < 1) {
01381             ast_log(LOG_WARNING, "Too small UDPTLFECEntries value.  Defaulting to 1.\n");
01382             udptlfecentries = 1;
01383          }
01384          if (udptlfecentries > MAX_FEC_ENTRIES) {
01385             ast_log(LOG_WARNING, "Too large UDPTLFECEntries value.  Defaulting to %d.\n", MAX_FEC_ENTRIES);
01386             udptlfecentries = MAX_FEC_ENTRIES;
01387          }
01388       }
01389       if ((s = ast_variable_retrieve(cfg, "general", "UDPTLFECSpan"))) {
01390          udptlfecspan = atoi(s);
01391          if (udptlfecspan < 1) {
01392             ast_log(LOG_WARNING, "Too small UDPTLFECSpan value.  Defaulting to 1.\n");
01393             udptlfecspan = 1;
01394          }
01395          if (udptlfecspan > MAX_FEC_SPAN) {
01396             ast_log(LOG_WARNING, "Too large UDPTLFECSpan value.  Defaulting to %d.\n", MAX_FEC_SPAN);
01397             udptlfecspan = MAX_FEC_SPAN;
01398          }
01399       }
01400       if ((s = ast_variable_retrieve(cfg, "general", "use_even_ports"))) {
01401          use_even_ports = ast_true(s);
01402       }
01403       ast_config_destroy(cfg);
01404    }
01405    if (udptlstart >= udptlend) {
01406       ast_log(LOG_WARNING, "Unreasonable values for UDPTL start/end ports; defaulting to 4500-4999.\n");
01407       udptlstart = 4500;
01408       udptlend = 4999;
01409    }
01410    if (use_even_ports && (udptlstart & 1)) {
01411       ++udptlstart;
01412       ast_log(LOG_NOTICE, "Odd numbered udptlstart specified but use_even_ports enabled. udptlstart is now %d\n", udptlstart);
01413    }
01414    if (use_even_ports && (udptlend & 1)) {
01415       --udptlend;
01416       ast_log(LOG_NOTICE, "Odd numbered udptlend specified but use_event_ports enabled. udptlend is now %d\n", udptlend);
01417    }
01418    ast_verb(2, "UDPTL allocating from port range %d -> %d\n", udptlstart, udptlend);
01419 }
01420 
01421 int ast_udptl_reload(void)
01422 {
01423    __ast_udptl_reload(1);
01424    return 0;
01425 }
01426 
01427 /*!
01428  * \internal
01429  * \brief Clean up resources on Asterisk shutdown
01430  */
01431 static void udptl_shutdown(void)
01432 {
01433    ast_cli_unregister_multiple(cli_udptl, ARRAY_LEN(cli_udptl));
01434 }
01435 
01436 void ast_udptl_init(void)
01437 {
01438    __ast_udptl_reload(0);
01439 
01440    ast_cli_register_multiple(cli_udptl, ARRAY_LEN(cli_udptl));
01441 
01442    ast_register_atexit(udptl_shutdown);
01443 }

Generated on 31 Aug 2015 for Asterisk - The Open Source Telephony Project by  doxygen 1.6.1