Wed Mar 4 19:58:14 2009

Asterisk developer's documentation


udptl.c

Go to the documentation of this file.
00001 /*
00002  * Asterisk -- A telephony toolkit for Linux.
00003  *
00004  * UDPTL support for T.38
00005  * 
00006  * Copyright (C) 2005, Steve Underwood, partly based on RTP code which is
00007  * Copyright (C) 1999-2006, Digium, Inc.
00008  *
00009  * Steve Underwood <steveu@coppice.org>
00010  *
00011  * This program is free software, distributed under the terms of
00012  * the GNU General Public License
00013  *
00014  * A license has been granted to Digium (via disclaimer) for the use of
00015  * this code.
00016  */
00017 
00018 #include "asterisk.h"
00019 
00020 ASTERISK_FILE_VERSION(__FILE__, "$Revision: 168603 $")
00021 
00022 #include <stdio.h>
00023 #include <stdlib.h>
00024 #include <string.h>
00025 #include <sys/time.h>
00026 #include <signal.h>
00027 #include <errno.h>
00028 #include <unistd.h>
00029 #include <netinet/in.h>
00030 #include <sys/time.h>
00031 #include <sys/socket.h>
00032 #include <arpa/inet.h>
00033 #include <fcntl.h>
00034 
00035 #include "asterisk/udptl.h"
00036 #include "asterisk/frame.h"
00037 #include "asterisk/logger.h"
00038 #include "asterisk/options.h"
00039 #include "asterisk/channel.h"
00040 #include "asterisk/acl.h"
00041 #include "asterisk/channel.h"
00042 #include "asterisk/config.h"
00043 #include "asterisk/lock.h"
00044 #include "asterisk/utils.h"
00045 #include "asterisk/cli.h"
00046 #include "asterisk/unaligned.h"
00047 #include "asterisk/utils.h"
00048 
00049 #define UDPTL_MTU    1200
00050 
00051 #if !defined(FALSE)
00052 #define FALSE 0
00053 #endif
00054 #if !defined(TRUE)
00055 #define TRUE (!FALSE)
00056 #endif
00057 
00058 static int udptlstart;
00059 static int udptlend;
00060 static int udptldebug;                    /* Are we debugging? */
00061 static struct sockaddr_in udptldebugaddr;   /* Debug packets to/from this host */
00062 #ifdef SO_NO_CHECK
00063 static int nochecksums;
00064 #endif
00065 static int udptlfectype;
00066 static int udptlfecentries;
00067 static int udptlfecspan;
00068 static int udptlmaxdatagram;
00069 
00070 #define LOCAL_FAX_MAX_DATAGRAM      400
00071 #define MAX_FEC_ENTRIES             5
00072 #define MAX_FEC_SPAN                5
00073 
00074 #define UDPTL_BUF_MASK              15
00075 
00076 typedef struct {
00077    int buf_len;
00078    uint8_t buf[LOCAL_FAX_MAX_DATAGRAM];
00079 } udptl_fec_tx_buffer_t;
00080 
00081 typedef struct {
00082    int buf_len;
00083    uint8_t buf[LOCAL_FAX_MAX_DATAGRAM];
00084    int fec_len[MAX_FEC_ENTRIES];
00085    uint8_t fec[MAX_FEC_ENTRIES][LOCAL_FAX_MAX_DATAGRAM];
00086    int fec_span;
00087    int fec_entries;
00088 } udptl_fec_rx_buffer_t;
00089 
00090 struct ast_udptl {
00091    int fd;
00092    char resp;
00093    struct ast_frame f[16];
00094    unsigned char rawdata[8192 + AST_FRIENDLY_OFFSET];
00095    unsigned int lasteventseqn;
00096    int nat;
00097    int flags;
00098    struct sockaddr_in us;
00099    struct sockaddr_in them;
00100    int *ioid;
00101    struct sched_context *sched;
00102    struct io_context *io;
00103    void *data;
00104    ast_udptl_callback callback;
00105    int udptl_offered_from_local;
00106 
00107    /*! This option indicates the error correction scheme used in transmitted UDPTL
00108        packets. */
00109    int error_correction_scheme;
00110 
00111    /*! This option indicates the number of error correction entries transmitted in
00112        UDPTL packets. */
00113    int error_correction_entries;
00114 
00115    /*! This option indicates the span of the error correction entries in transmitted
00116        UDPTL packets (FEC only). */
00117    int error_correction_span;
00118 
00119    /*! This option indicates the maximum size of a UDPTL packet that can be accepted by
00120        the remote device. */
00121    int far_max_datagram_size;
00122 
00123    /*! This option indicates the maximum size of a UDPTL packet that we are prepared to
00124        accept. */
00125    int local_max_datagram_size;
00126 
00127    int verbose;
00128 
00129    struct sockaddr_in far;
00130 
00131    int tx_seq_no;
00132    int rx_seq_no;
00133    int rx_expected_seq_no;
00134 
00135    udptl_fec_tx_buffer_t tx[UDPTL_BUF_MASK + 1];
00136    udptl_fec_rx_buffer_t rx[UDPTL_BUF_MASK + 1];
00137 };
00138 
00139 static struct ast_udptl_protocol *protos;
00140 
00141 static int udptl_rx_packet(struct ast_udptl *s, uint8_t *buf, int len);
00142 static int udptl_build_packet(struct ast_udptl *s, uint8_t *buf, uint8_t *ifp, int ifp_len);
00143 
00144 static inline int udptl_debug_test_addr(struct sockaddr_in *addr)
00145 {
00146    if (udptldebug == 0)
00147       return 0;
00148    if (udptldebugaddr.sin_addr.s_addr) {
00149       if (((ntohs(udptldebugaddr.sin_port) != 0)
00150          && (udptldebugaddr.sin_port != addr->sin_port))
00151          || (udptldebugaddr.sin_addr.s_addr != addr->sin_addr.s_addr))
00152          return 0;
00153    }
00154    return 1;
00155 }
00156 
00157 static int decode_length(uint8_t *buf, int limit, int *len, int *pvalue)
00158 {
00159    if (*len >= limit)
00160       return -1;
00161    if ((buf[*len] & 0x80) == 0) {
00162       *pvalue = buf[*len];
00163       (*len)++;
00164       return 0;
00165    }
00166    if ((buf[*len] & 0x40) == 0) {
00167       if (*len == limit - 1)
00168          return -1;
00169       *pvalue = (buf[*len] & 0x3F) << 8;
00170       (*len)++;
00171       *pvalue |= buf[*len];
00172       (*len)++;
00173       return 0;
00174    }
00175    *pvalue = (buf[*len] & 0x3F) << 14;
00176    (*len)++;
00177    /* Indicate we have a fragment */
00178    return 1;
00179 }
00180 /*- End of function --------------------------------------------------------*/
00181 
00182 static int decode_open_type(uint8_t *buf, int limit, int *len, const uint8_t **p_object, int *p_num_octets)
00183 {
00184    int octet_cnt;
00185    int octet_idx;
00186    int stat;
00187    int i;
00188    const uint8_t **pbuf;
00189 
00190    for (octet_idx = 0, *p_num_octets = 0; ; octet_idx += octet_cnt) {
00191       if ((stat = decode_length(buf, limit, len, &octet_cnt)) < 0)
00192          return -1;
00193       if (octet_cnt > 0) {
00194          *p_num_octets += octet_cnt;
00195 
00196          pbuf = &p_object[octet_idx];
00197          i = 0;
00198          /* Make sure the buffer contains at least the number of bits requested */
00199          if ((*len + octet_cnt) > limit)
00200             return -1;
00201 
00202          *pbuf = &buf[*len];
00203          *len += octet_cnt;
00204       }
00205       if (stat == 0)
00206          break;
00207    }
00208    return 0;
00209 }
00210 /*- End of function --------------------------------------------------------*/
00211 
00212 static int encode_length(uint8_t *buf, int *len, int value)
00213 {
00214    int multiplier;
00215 
00216    if (value < 0x80) {
00217       /* 1 octet */
00218       buf[*len] = value;
00219       (*len)++;
00220       return value;
00221    }
00222    if (value < 0x4000) {
00223       /* 2 octets */
00224       /* Set the first bit of the first octet */
00225       buf[*len] = ((0x8000 | value) >> 8) & 0xFF;
00226       (*len)++;
00227       buf[*len] = value & 0xFF;
00228       (*len)++;
00229       return value;
00230    }
00231    /* Fragmentation */
00232    multiplier = (value < 0x10000) ? (value >> 14) : 4;
00233    /* Set the first 2 bits of the octet */
00234    buf[*len] = 0xC0 | multiplier;
00235    (*len)++;
00236    return multiplier << 14;
00237 }
00238 /*- End of function --------------------------------------------------------*/
00239 
00240 static int encode_open_type(uint8_t *buf, int *len, const uint8_t *data, int num_octets)
00241 {
00242    int enclen;
00243    int octet_idx;
00244    uint8_t zero_byte;
00245 
00246    /* If open type is of zero length, add a single zero byte (10.1) */
00247    if (num_octets == 0) {
00248       zero_byte = 0;
00249       data = &zero_byte;
00250       num_octets = 1;
00251    }
00252    /* Encode the open type */
00253    for (octet_idx = 0; ; num_octets -= enclen, octet_idx += enclen) {
00254       if ((enclen = encode_length(buf, len, num_octets)) < 0)
00255          return -1;
00256       if (enclen > 0) {
00257          memcpy(&buf[*len], &data[octet_idx], enclen);
00258          *len += enclen;
00259       }
00260       if (enclen >= num_octets)
00261          break;
00262    }
00263 
00264    return 0;
00265 }
00266 /*- End of function --------------------------------------------------------*/
00267 
00268 static int udptl_rx_packet(struct ast_udptl *s, uint8_t *buf, int len)
00269 {
00270    int stat;
00271    int stat2;
00272    int i;
00273    int j;
00274    int k;
00275    int l;
00276    int m;
00277    int x;
00278    int limit;
00279    int which;
00280    int ptr;
00281    int count;
00282    int total_count;
00283    int seq_no;
00284    const uint8_t *ifp;
00285    const uint8_t *data;
00286    int ifp_len;
00287    int repaired[16];
00288    const uint8_t *bufs[16];
00289    int lengths[16];
00290    int span;
00291    int entries;
00292    int ifp_no;
00293 
00294    ptr = 0;
00295    ifp_no = 0;
00296    memset(&s->f[0], 0, sizeof(s->f[0]));
00297 
00298    /* Decode seq_number */
00299    if (ptr + 2 > len)
00300       return -1;
00301    seq_no = (buf[0] << 8) | buf[1];
00302    ptr += 2;
00303 
00304    /* Break out the primary packet */
00305    if ((stat = decode_open_type(buf, len, &ptr, &ifp, &ifp_len)) != 0)
00306       return -1;
00307    /* Decode error_recovery */
00308    if (ptr + 1 > len)
00309       return -1;
00310    if ((buf[ptr++] & 0x80) == 0) {
00311       /* Secondary packet mode for error recovery */
00312       if (seq_no > s->rx_seq_no) {
00313          /* We received a later packet than we expected, so we need to check if we can fill in the gap from the
00314             secondary packets. */
00315          total_count = 0;
00316          do {
00317             if ((stat2 = decode_length(buf, len, &ptr, &count)) < 0)
00318                return -1;
00319             for (i = 0; i < count; i++) {
00320                if ((stat = decode_open_type(buf, len, &ptr, &bufs[total_count + i], &lengths[total_count + i])) != 0)
00321                   return -1;
00322             }
00323             total_count += count;
00324          }
00325          while (stat2 > 0);
00326          /* Step through in reverse order, so we go oldest to newest */
00327          for (i = total_count; i > 0; i--) {
00328             if (seq_no - i >= s->rx_seq_no) {
00329                /* This one wasn't seen before */
00330                /* Decode the secondary IFP packet */
00331                //fprintf(stderr, "Secondary %d, len %d\n", seq_no - i, lengths[i - 1]);
00332                s->f[ifp_no].frametype = AST_FRAME_MODEM;
00333                s->f[ifp_no].subclass = AST_MODEM_T38;
00334 
00335                s->f[ifp_no].mallocd = 0;
00336                s->f[ifp_no].seqno = seq_no - i;
00337                s->f[ifp_no].datalen = lengths[i - 1];
00338                s->f[ifp_no].data = (uint8_t *) bufs[i - 1];
00339                s->f[ifp_no].offset = 0;
00340                s->f[ifp_no].src = "UDPTL";
00341                if (ifp_no > 0)
00342                   AST_LIST_NEXT(&s->f[ifp_no - 1], frame_list) = &s->f[ifp_no];
00343                AST_LIST_NEXT(&s->f[ifp_no], frame_list) = NULL;
00344                ifp_no++;
00345             }
00346          }
00347       }
00348    }
00349    else
00350    {
00351       /* FEC mode for error recovery */
00352       /* Our buffers cannot tolerate overlength IFP packets in FEC mode */
00353       if (ifp_len > LOCAL_FAX_MAX_DATAGRAM)
00354          return -1;
00355       /* Update any missed slots in the buffer */
00356       for ( ; seq_no > s->rx_seq_no; s->rx_seq_no++) {
00357          x = s->rx_seq_no & UDPTL_BUF_MASK;
00358          s->rx[x].buf_len = -1;
00359          s->rx[x].fec_len[0] = 0;
00360          s->rx[x].fec_span = 0;
00361          s->rx[x].fec_entries = 0;
00362       }
00363 
00364       x = seq_no & UDPTL_BUF_MASK;
00365 
00366       memset(repaired, 0, sizeof(repaired));
00367 
00368       /* Save the new IFP packet */
00369       memcpy(s->rx[x].buf, ifp, ifp_len);
00370       s->rx[x].buf_len = ifp_len;
00371       repaired[x] = TRUE;
00372 
00373       /* Decode the FEC packets */
00374       /* The span is defined as an unconstrained integer, but will never be more
00375          than a small value. */
00376       if (ptr + 2 > len)
00377          return -1;
00378       if (buf[ptr++] != 1)
00379          return -1;
00380       span = buf[ptr++];
00381       s->rx[x].fec_span = span;
00382 
00383       /* The number of entries is defined as a length, but will only ever be a small
00384          value. Treat it as such. */
00385       if (ptr + 1 > len)
00386          return -1;
00387       entries = buf[ptr++];
00388       s->rx[x].fec_entries = entries;
00389 
00390       /* Decode the elements */
00391       for (i = 0; i < entries; i++) {
00392          if ((stat = decode_open_type(buf, len, &ptr, &data, &s->rx[x].fec_len[i])) != 0)
00393             return -1;
00394          if (s->rx[x].fec_len[i] > LOCAL_FAX_MAX_DATAGRAM)
00395             return -1;
00396 
00397          /* Save the new FEC data */
00398          memcpy(s->rx[x].fec[i], data, s->rx[x].fec_len[i]);
00399 #if 0
00400          fprintf(stderr, "FEC: ");
00401          for (j = 0; j < s->rx[x].fec_len[i]; j++)
00402             fprintf(stderr, "%02X ", data[j]);
00403          fprintf(stderr, "\n");
00404 #endif
00405       }
00406 
00407       /* See if we can reconstruct anything which is missing */
00408       /* TODO: this does not comprehensively hunt back and repair everything that is possible */
00409       for (l = x; l != ((x - (16 - span*entries)) & UDPTL_BUF_MASK); l = (l - 1) & UDPTL_BUF_MASK) {
00410          if (s->rx[l].fec_len[0] <= 0)
00411             continue;
00412          for (m = 0; m < s->rx[l].fec_entries; m++) {
00413             limit = (l + m) & UDPTL_BUF_MASK;
00414             for (which = -1, k = (limit - s->rx[l].fec_span * s->rx[l].fec_entries) & UDPTL_BUF_MASK; k != limit; k = (k + s->rx[l].fec_entries) & UDPTL_BUF_MASK) {
00415                if (s->rx[k].buf_len <= 0)
00416                   which = (which == -1) ? k : -2;
00417             }
00418             if (which >= 0) {
00419                /* Repairable */
00420                for (j = 0; j < s->rx[l].fec_len[m]; j++) {
00421                   s->rx[which].buf[j] = s->rx[l].fec[m][j];
00422                   for (k = (limit - s->rx[l].fec_span * s->rx[l].fec_entries) & UDPTL_BUF_MASK; k != limit; k = (k + s->rx[l].fec_entries) & UDPTL_BUF_MASK)
00423                      s->rx[which].buf[j] ^= (s->rx[k].buf_len > j) ? s->rx[k].buf[j] : 0;
00424                }
00425                s->rx[which].buf_len = s->rx[l].fec_len[m];
00426                repaired[which] = TRUE;
00427             }
00428          }
00429       }
00430       /* Now play any new packets forwards in time */
00431       for (l = (x + 1) & UDPTL_BUF_MASK, j = seq_no - UDPTL_BUF_MASK; l != x; l = (l + 1) & UDPTL_BUF_MASK, j++) {
00432          if (repaired[l]) {
00433             //fprintf(stderr, "Fixed packet %d, len %d\n", j, l);
00434             s->f[ifp_no].frametype = AST_FRAME_MODEM;
00435             s->f[ifp_no].subclass = AST_MODEM_T38;
00436          
00437             s->f[ifp_no].mallocd = 0;
00438             s->f[ifp_no].seqno = j;
00439             s->f[ifp_no].datalen = s->rx[l].buf_len;
00440             s->f[ifp_no].data = s->rx[l].buf;
00441             s->f[ifp_no].offset = 0;
00442             s->f[ifp_no].src = "UDPTL";
00443             if (ifp_no > 0)
00444                AST_LIST_NEXT(&s->f[ifp_no - 1], frame_list) = &s->f[ifp_no];
00445             AST_LIST_NEXT(&s->f[ifp_no], frame_list) = NULL;
00446             ifp_no++;
00447          }
00448       }
00449    }
00450 
00451    /* If packets are received out of sequence, we may have already processed this packet from the error
00452       recovery information in a packet already received. */
00453    if (seq_no >= s->rx_seq_no) {
00454       /* Decode the primary IFP packet */
00455       s->f[ifp_no].frametype = AST_FRAME_MODEM;
00456       s->f[ifp_no].subclass = AST_MODEM_T38;
00457       
00458       s->f[ifp_no].mallocd = 0;
00459       s->f[ifp_no].seqno = seq_no;
00460       s->f[ifp_no].datalen = ifp_len;
00461       s->f[ifp_no].data = (uint8_t *) ifp;
00462       s->f[ifp_no].offset = 0;
00463       s->f[ifp_no].src = "UDPTL";
00464       if (ifp_no > 0)
00465          AST_LIST_NEXT(&s->f[ifp_no - 1], frame_list) = &s->f[ifp_no];
00466       AST_LIST_NEXT(&s->f[ifp_no], frame_list) = NULL;
00467 
00468       ifp_no++;
00469    }
00470 
00471    s->rx_seq_no = seq_no + 1;
00472    return ifp_no;
00473 }
00474 /*- End of function --------------------------------------------------------*/
00475 
00476 static int udptl_build_packet(struct ast_udptl *s, uint8_t *buf, uint8_t *ifp, int ifp_len)
00477 {
00478    uint8_t fec[LOCAL_FAX_MAX_DATAGRAM];
00479    int i;
00480    int j;
00481    int seq;
00482    int entry;
00483    int entries;
00484    int span;
00485    int m;
00486    int len;
00487    int limit;
00488    int high_tide;
00489 
00490    seq = s->tx_seq_no & 0xFFFF;
00491 
00492    /* Map the sequence number to an entry in the circular buffer */
00493    entry = seq & UDPTL_BUF_MASK;
00494 
00495    /* We save the message in a circular buffer, for generating FEC or
00496       redundancy sets later on. */
00497    s->tx[entry].buf_len = ifp_len;
00498    memcpy(s->tx[entry].buf, ifp, ifp_len);
00499    
00500    /* Build the UDPTLPacket */
00501 
00502    len = 0;
00503    /* Encode the sequence number */
00504    buf[len++] = (seq >> 8) & 0xFF;
00505    buf[len++] = seq & 0xFF;
00506 
00507    /* Encode the primary IFP packet */
00508    if (encode_open_type(buf, &len, ifp, ifp_len) < 0)
00509       return -1;
00510 
00511    /* Encode the appropriate type of error recovery information */
00512    switch (s->error_correction_scheme)
00513    {
00514    case UDPTL_ERROR_CORRECTION_NONE:
00515       /* Encode the error recovery type */
00516       buf[len++] = 0x00;
00517       /* The number of entries will always be zero, so it is pointless allowing
00518          for the fragmented case here. */
00519       if (encode_length(buf, &len, 0) < 0)
00520          return -1;
00521       break;
00522    case UDPTL_ERROR_CORRECTION_REDUNDANCY:
00523       /* Encode the error recovery type */
00524       buf[len++] = 0x00;
00525       if (s->tx_seq_no > s->error_correction_entries)
00526          entries = s->error_correction_entries;
00527       else
00528          entries = s->tx_seq_no;
00529       /* The number of entries will always be small, so it is pointless allowing
00530          for the fragmented case here. */
00531       if (encode_length(buf, &len, entries) < 0)
00532          return -1;
00533       /* Encode the elements */
00534       for (i = 0; i < entries; i++) {
00535          j = (entry - i - 1) & UDPTL_BUF_MASK;
00536          if (encode_open_type(buf, &len, s->tx[j].buf, s->tx[j].buf_len) < 0)
00537             return -1;
00538       }
00539       break;
00540    case UDPTL_ERROR_CORRECTION_FEC:
00541       span = s->error_correction_span;
00542       entries = s->error_correction_entries;
00543       if (seq < s->error_correction_span*s->error_correction_entries) {
00544          /* In the initial stages, wind up the FEC smoothly */
00545          entries = seq/s->error_correction_span;
00546          if (seq < s->error_correction_span)
00547             span = 0;
00548       }
00549       /* Encode the error recovery type */
00550       buf[len++] = 0x80;
00551       /* Span is defined as an inconstrained integer, which it dumb. It will only
00552          ever be a small value. Treat it as such. */
00553       buf[len++] = 1;
00554       buf[len++] = span;
00555       /* The number of entries is defined as a length, but will only ever be a small
00556          value. Treat it as such. */
00557       buf[len++] = entries;
00558       for (m = 0; m < entries; m++) {
00559          /* Make an XOR'ed entry the maximum length */
00560          limit = (entry + m) & UDPTL_BUF_MASK;
00561          high_tide = 0;
00562          for (i = (limit - span*entries) & UDPTL_BUF_MASK; i != limit; i = (i + entries) & UDPTL_BUF_MASK) {
00563             if (high_tide < s->tx[i].buf_len) {
00564                for (j = 0; j < high_tide; j++)
00565                   fec[j] ^= s->tx[i].buf[j];
00566                for ( ; j < s->tx[i].buf_len; j++)
00567                   fec[j] = s->tx[i].buf[j];
00568                high_tide = s->tx[i].buf_len;
00569             } else {
00570                for (j = 0; j < s->tx[i].buf_len; j++)
00571                   fec[j] ^= s->tx[i].buf[j];
00572             }
00573          }
00574          if (encode_open_type(buf, &len, fec, high_tide) < 0)
00575             return -1;
00576       }
00577       break;
00578    }
00579 
00580    if (s->verbose)
00581       fprintf(stderr, "\n");
00582 
00583    s->tx_seq_no++;
00584    return len;
00585 }
00586 
00587 int ast_udptl_fd(struct ast_udptl *udptl)
00588 {
00589    return udptl->fd;
00590 }
00591 
00592 void ast_udptl_set_data(struct ast_udptl *udptl, void *data)
00593 {
00594    udptl->data = data;
00595 }
00596 
00597 void ast_udptl_set_callback(struct ast_udptl *udptl, ast_udptl_callback callback)
00598 {
00599    udptl->callback = callback;
00600 }
00601 
00602 void ast_udptl_setnat(struct ast_udptl *udptl, int nat)
00603 {
00604    udptl->nat = nat;
00605 }
00606 
00607 static int udptlread(int *id, int fd, short events, void *cbdata)
00608 {
00609    struct ast_udptl *udptl = cbdata;
00610    struct ast_frame *f;
00611 
00612    if ((f = ast_udptl_read(udptl))) {
00613       if (udptl->callback)
00614          udptl->callback(udptl, f, udptl->data);
00615    }
00616    return 1;
00617 }
00618 
00619 struct ast_frame *ast_udptl_read(struct ast_udptl *udptl)
00620 {
00621    int res;
00622    struct sockaddr_in sin;
00623    socklen_t len;
00624    uint16_t seqno = 0;
00625    uint16_t *udptlheader;
00626 
00627    len = sizeof(sin);
00628    
00629    /* Cache where the header will go */
00630    res = recvfrom(udptl->fd,
00631          udptl->rawdata + AST_FRIENDLY_OFFSET,
00632          sizeof(udptl->rawdata) - AST_FRIENDLY_OFFSET,
00633          0,
00634          (struct sockaddr *) &sin,
00635          &len);
00636    udptlheader = (uint16_t *)(udptl->rawdata + AST_FRIENDLY_OFFSET);
00637    if (res < 0) {
00638       if (errno != EAGAIN)
00639          ast_log(LOG_WARNING, "UDPTL read error: %s\n", strerror(errno));
00640       ast_assert(errno != EBADF);
00641       return &ast_null_frame;
00642    }
00643 
00644    /* Ignore if the other side hasn't been given an address yet. */
00645    if (!udptl->them.sin_addr.s_addr || !udptl->them.sin_port)
00646       return &ast_null_frame;
00647 
00648    if (udptl->nat) {
00649       /* Send to whoever sent to us */
00650       if ((udptl->them.sin_addr.s_addr != sin.sin_addr.s_addr) ||
00651          (udptl->them.sin_port != sin.sin_port)) {
00652          memcpy(&udptl->them, &sin, sizeof(udptl->them));
00653          ast_log(LOG_DEBUG, "UDPTL NAT: Using address %s:%d\n", ast_inet_ntoa(udptl->them.sin_addr), ntohs(udptl->them.sin_port));
00654       }
00655    }
00656 
00657    if (udptl_debug_test_addr(&sin)) {
00658       ast_verbose("Got UDPTL packet from %s:%d (type %d, seq %d, len %d)\n",
00659          ast_inet_ntoa(sin.sin_addr), ntohs(sin.sin_port), 0, seqno, res);
00660    }
00661 #if 0
00662    printf("Got UDPTL packet from %s:%d (seq %d, len = %d)\n", ast_inet_ntoa(sin.sin_addr), ntohs(sin.sin_port), seqno, res);
00663 #endif
00664    if (udptl_rx_packet(udptl, udptl->rawdata + AST_FRIENDLY_OFFSET, res) < 1)
00665       return &ast_null_frame;
00666 
00667    return &udptl->f[0];
00668 }
00669 
00670 void ast_udptl_offered_from_local(struct ast_udptl* udptl, int local)
00671 {
00672    if (udptl)
00673       udptl->udptl_offered_from_local = local;
00674    else
00675       ast_log(LOG_WARNING, "udptl structure is null\n");
00676 }
00677 
00678 int ast_udptl_get_error_correction_scheme(struct ast_udptl* udptl)
00679 {
00680    if (udptl)
00681       return udptl->error_correction_scheme;
00682    else {
00683       ast_log(LOG_WARNING, "udptl structure is null\n");
00684       return -1;
00685    }
00686 }
00687 
00688 void ast_udptl_set_error_correction_scheme(struct ast_udptl* udptl, int ec)
00689 {
00690    if (udptl) {
00691       switch (ec) {
00692       case UDPTL_ERROR_CORRECTION_FEC:
00693          udptl->error_correction_scheme = UDPTL_ERROR_CORRECTION_FEC;
00694          break;
00695       case UDPTL_ERROR_CORRECTION_REDUNDANCY:
00696          udptl->error_correction_scheme = UDPTL_ERROR_CORRECTION_REDUNDANCY;
00697          break;
00698       case UDPTL_ERROR_CORRECTION_NONE:
00699          udptl->error_correction_scheme = UDPTL_ERROR_CORRECTION_NONE;
00700          break;
00701       default:
00702          ast_log(LOG_WARNING, "error correction parameter invalid\n");
00703       };
00704    } else
00705       ast_log(LOG_WARNING, "udptl structure is null\n");
00706 }
00707 
00708 int ast_udptl_get_local_max_datagram(struct ast_udptl* udptl)
00709 {
00710    if (udptl)
00711       return udptl->local_max_datagram_size;
00712    else {
00713       ast_log(LOG_WARNING, "udptl structure is null\n");
00714       return -1;
00715    }
00716 }
00717 
00718 int ast_udptl_get_far_max_datagram(struct ast_udptl* udptl)
00719 {
00720    if (udptl)
00721       return udptl->far_max_datagram_size;
00722    else {
00723       ast_log(LOG_WARNING, "udptl structure is null\n");
00724       return -1;
00725    }
00726 }
00727 
00728 void ast_udptl_set_local_max_datagram(struct ast_udptl* udptl, int max_datagram)
00729 {
00730    if (udptl)
00731       udptl->local_max_datagram_size = max_datagram;
00732    else
00733       ast_log(LOG_WARNING, "udptl structure is null\n");
00734 }
00735 
00736 void ast_udptl_set_far_max_datagram(struct ast_udptl* udptl, int max_datagram)
00737 {
00738    if (udptl)
00739       udptl->far_max_datagram_size = max_datagram;
00740    else
00741       ast_log(LOG_WARNING, "udptl structure is null\n");
00742 }
00743 
00744 struct ast_udptl *ast_udptl_new_with_bindaddr(struct sched_context *sched, struct io_context *io, int callbackmode, struct in_addr addr)
00745 {
00746    struct ast_udptl *udptl;
00747    int x;
00748    int startplace;
00749    int i;
00750    long int flags;
00751 
00752    if (!(udptl = ast_calloc(1, sizeof(*udptl))))
00753       return NULL;
00754 
00755    if (udptlfectype == 2)
00756       udptl->error_correction_scheme = UDPTL_ERROR_CORRECTION_FEC;
00757    else if (udptlfectype == 1)
00758       udptl->error_correction_scheme = UDPTL_ERROR_CORRECTION_REDUNDANCY;
00759    else
00760       udptl->error_correction_scheme = UDPTL_ERROR_CORRECTION_NONE;
00761    udptl->error_correction_span = udptlfecspan;
00762    udptl->error_correction_entries = udptlfecentries;
00763    
00764    udptl->far_max_datagram_size = udptlmaxdatagram;
00765    udptl->local_max_datagram_size = udptlmaxdatagram;
00766 
00767    memset(&udptl->rx, 0, sizeof(udptl->rx));
00768    memset(&udptl->tx, 0, sizeof(udptl->tx));
00769    for (i = 0; i <= UDPTL_BUF_MASK; i++) {
00770       udptl->rx[i].buf_len = -1;
00771       udptl->tx[i].buf_len = -1;
00772    }
00773 
00774    udptl->them.sin_family = AF_INET;
00775    udptl->us.sin_family = AF_INET;
00776 
00777    if ((udptl->fd = socket(AF_INET, SOCK_DGRAM, 0)) < 0) {
00778       free(udptl);
00779       ast_log(LOG_WARNING, "Unable to allocate socket: %s\n", strerror(errno));
00780       return NULL;
00781    }
00782    flags = fcntl(udptl->fd, F_GETFL);
00783    fcntl(udptl->fd, F_SETFL, flags | O_NONBLOCK);
00784 #ifdef SO_NO_CHECK
00785    if (nochecksums)
00786       setsockopt(udptl->fd, SOL_SOCKET, SO_NO_CHECK, &nochecksums, sizeof(nochecksums));
00787 #endif
00788    /* Find us a place */
00789    x = (ast_random() % (udptlend - udptlstart)) + udptlstart;
00790    startplace = x;
00791    for (;;) {
00792       udptl->us.sin_port = htons(x);
00793       udptl->us.sin_addr = addr;
00794       if (bind(udptl->fd, (struct sockaddr *) &udptl->us, sizeof(udptl->us)) == 0)
00795          break;
00796       if (errno != EADDRINUSE) {
00797          ast_log(LOG_WARNING, "Unexpected bind error: %s\n", strerror(errno));
00798          close(udptl->fd);
00799          free(udptl);
00800          return NULL;
00801       }
00802       if (++x > udptlend)
00803          x = udptlstart;
00804       if (x == startplace) {
00805          ast_log(LOG_WARNING, "No UDPTL ports remaining\n");
00806          close(udptl->fd);
00807          free(udptl);
00808          return NULL;
00809       }
00810    }
00811    if (io && sched && callbackmode) {
00812       /* Operate this one in a callback mode */
00813       udptl->sched = sched;
00814       udptl->io = io;
00815       udptl->ioid = ast_io_add(udptl->io, udptl->fd, udptlread, AST_IO_IN, udptl);
00816    }
00817    return udptl;
00818 }
00819 
00820 struct ast_udptl *ast_udptl_new(struct sched_context *sched, struct io_context *io, int callbackmode)
00821 {
00822    struct in_addr ia;
00823    memset(&ia, 0, sizeof(ia));
00824    return ast_udptl_new_with_bindaddr(sched, io, callbackmode, ia);
00825 }
00826 
00827 int ast_udptl_settos(struct ast_udptl *udptl, int tos)
00828 {
00829    int res;
00830 
00831    if ((res = setsockopt(udptl->fd, IPPROTO_IP, IP_TOS, &tos, sizeof(tos)))) 
00832       ast_log(LOG_WARNING, "UDPTL unable to set TOS to %d\n", tos);
00833    return res;
00834 }
00835 
00836 void ast_udptl_set_peer(struct ast_udptl *udptl, struct sockaddr_in *them)
00837 {
00838    udptl->them.sin_port = them->sin_port;
00839    udptl->them.sin_addr = them->sin_addr;
00840 }
00841 
00842 void ast_udptl_get_peer(struct ast_udptl *udptl, struct sockaddr_in *them)
00843 {
00844    memset(them, 0, sizeof(*them));
00845    them->sin_family = AF_INET;
00846    them->sin_port = udptl->them.sin_port;
00847    them->sin_addr = udptl->them.sin_addr;
00848 }
00849 
00850 void ast_udptl_get_us(struct ast_udptl *udptl, struct sockaddr_in *us)
00851 {
00852    memcpy(us, &udptl->us, sizeof(udptl->us));
00853 }
00854 
00855 void ast_udptl_stop(struct ast_udptl *udptl)
00856 {
00857    memset(&udptl->them.sin_addr, 0, sizeof(udptl->them.sin_addr));
00858    memset(&udptl->them.sin_port, 0, sizeof(udptl->them.sin_port));
00859 }
00860 
00861 void ast_udptl_destroy(struct ast_udptl *udptl)
00862 {
00863    if (udptl->ioid)
00864       ast_io_remove(udptl->io, udptl->ioid);
00865    if (udptl->fd > -1)
00866       close(udptl->fd);
00867    free(udptl);
00868 }
00869 
00870 int ast_udptl_write(struct ast_udptl *s, struct ast_frame *f)
00871 {
00872    int seq;
00873    int len;
00874    int res;
00875    uint8_t buf[LOCAL_FAX_MAX_DATAGRAM];
00876 
00877    /* If we have no peer, return immediately */ 
00878    if (s->them.sin_addr.s_addr == INADDR_ANY)
00879       return 0;
00880 
00881    /* If there is no data length, return immediately */
00882    if (f->datalen == 0)
00883       return 0;
00884    
00885    if (f->frametype != AST_FRAME_MODEM) {
00886       ast_log(LOG_WARNING, "UDPTL can only send T.38 data\n");
00887       return -1;
00888    }
00889 
00890    /* Save seq_no for debug output because udptl_build_packet increments it */
00891    seq = s->tx_seq_no & 0xFFFF;
00892 
00893    /* Cook up the UDPTL packet, with the relevant EC info. */
00894    len = udptl_build_packet(s, buf, f->data, f->datalen);
00895 
00896    if (len > 0 && s->them.sin_port && s->them.sin_addr.s_addr) {
00897       if ((res = sendto(s->fd, buf, len, 0, (struct sockaddr *) &s->them, sizeof(s->them))) < 0)
00898          ast_log(LOG_NOTICE, "UDPTL Transmission error to %s:%d: %s\n", ast_inet_ntoa(s->them.sin_addr), ntohs(s->them.sin_port), strerror(errno));
00899 #if 0
00900       printf("Sent %d bytes of UDPTL data to %s:%d\n", res, ast_inet_ntoa(udptl->them.sin_addr), ntohs(udptl->them.sin_port));
00901 #endif
00902       if (udptl_debug_test_addr(&s->them))
00903          ast_verbose("Sent UDPTL packet to %s:%d (type %d, seq %d, len %d)\n",
00904                ast_inet_ntoa(s->them.sin_addr),
00905                ntohs(s->them.sin_port), 0, seq, len);
00906    }
00907       
00908    return 0;
00909 }
00910 
00911 void ast_udptl_proto_unregister(struct ast_udptl_protocol *proto)
00912 {
00913    struct ast_udptl_protocol *cur;
00914    struct ast_udptl_protocol *prev;
00915 
00916    cur = protos;
00917    prev = NULL;
00918    while (cur) {
00919       if (cur == proto) {
00920          if (prev)
00921             prev->next = proto->next;
00922          else
00923             protos = proto->next;
00924          return;
00925       }
00926       prev = cur;
00927       cur = cur->next;
00928    }
00929 }
00930 
00931 int ast_udptl_proto_register(struct ast_udptl_protocol *proto)
00932 {
00933    struct ast_udptl_protocol *cur;
00934 
00935    cur = protos;
00936    while (cur) {
00937       if (cur->type == proto->type) {
00938          ast_log(LOG_WARNING, "Tried to register same protocol '%s' twice\n", cur->type);
00939          return -1;
00940       }
00941       cur = cur->next;
00942    }
00943    proto->next = protos;
00944    protos = proto;
00945    return 0;
00946 }
00947 
00948 static struct ast_udptl_protocol *get_proto(struct ast_channel *chan)
00949 {
00950    struct ast_udptl_protocol *cur;
00951 
00952    cur = protos;
00953    while (cur) {
00954       if (cur->type == chan->tech->type)
00955          return cur;
00956       cur = cur->next;
00957    }
00958    return NULL;
00959 }
00960 
00961 int ast_udptl_bridge(struct ast_channel *c0, struct ast_channel *c1, int flags, struct ast_frame **fo, struct ast_channel **rc)
00962 {
00963    struct ast_frame *f;
00964    struct ast_channel *who;
00965    struct ast_channel *cs[3];
00966    struct ast_udptl *p0;
00967    struct ast_udptl *p1;
00968    struct ast_udptl_protocol *pr0;
00969    struct ast_udptl_protocol *pr1;
00970    struct sockaddr_in ac0;
00971    struct sockaddr_in ac1;
00972    struct sockaddr_in t0;
00973    struct sockaddr_in t1;
00974    void *pvt0;
00975    void *pvt1;
00976    int to;
00977    
00978    ast_channel_lock(c0);
00979    while (ast_channel_trylock(c1)) {
00980       ast_channel_unlock(c0);
00981       usleep(1);
00982       ast_channel_lock(c0);
00983    }
00984    pr0 = get_proto(c0);
00985    pr1 = get_proto(c1);
00986    if (!pr0) {
00987       ast_log(LOG_WARNING, "Can't find native functions for channel '%s'\n", c0->name);
00988       ast_channel_unlock(c0);
00989       ast_channel_unlock(c1);
00990       return -1;
00991    }
00992    if (!pr1) {
00993       ast_log(LOG_WARNING, "Can't find native functions for channel '%s'\n", c1->name);
00994       ast_channel_unlock(c0);
00995       ast_channel_unlock(c1);
00996       return -1;
00997    }
00998    pvt0 = c0->tech_pvt;
00999    pvt1 = c1->tech_pvt;
01000    p0 = pr0->get_udptl_info(c0);
01001    p1 = pr1->get_udptl_info(c1);
01002    if (!p0 || !p1) {
01003       /* Somebody doesn't want to play... */
01004       ast_channel_unlock(c0);
01005       ast_channel_unlock(c1);
01006       return -2;
01007    }
01008    if (pr0->set_udptl_peer(c0, p1)) {
01009       ast_log(LOG_WARNING, "Channel '%s' failed to talk to '%s'\n", c0->name, c1->name);
01010       memset(&ac1, 0, sizeof(ac1));
01011    } else {
01012       /* Store UDPTL peer */
01013       ast_udptl_get_peer(p1, &ac1);
01014    }
01015    if (pr1->set_udptl_peer(c1, p0)) {
01016       ast_log(LOG_WARNING, "Channel '%s' failed to talk back to '%s'\n", c1->name, c0->name);
01017       memset(&ac0, 0, sizeof(ac0));
01018    } else {
01019       /* Store UDPTL peer */
01020       ast_udptl_get_peer(p0, &ac0);
01021    }
01022    ast_channel_unlock(c0);
01023    ast_channel_unlock(c1);
01024    cs[0] = c0;
01025    cs[1] = c1;
01026    cs[2] = NULL;
01027    for (;;) {
01028       if ((c0->tech_pvt != pvt0) ||
01029          (c1->tech_pvt != pvt1) ||
01030          (c0->masq || c0->masqr || c1->masq || c1->masqr)) {
01031             ast_log(LOG_DEBUG, "Oooh, something is weird, backing out\n");
01032             /* Tell it to try again later */
01033             return -3;
01034       }
01035       to = -1;
01036       ast_udptl_get_peer(p1, &t1);
01037       ast_udptl_get_peer(p0, &t0);
01038       if (inaddrcmp(&t1, &ac1)) {
01039          ast_log(LOG_DEBUG, "Oooh, '%s' changed end address to %s:%d\n", 
01040             c1->name, ast_inet_ntoa(t1.sin_addr), ntohs(t1.sin_port));
01041          ast_log(LOG_DEBUG, "Oooh, '%s' was %s:%d\n", 
01042             c1->name, ast_inet_ntoa(ac1.sin_addr), ntohs(ac1.sin_port));
01043          memcpy(&ac1, &t1, sizeof(ac1));
01044       }
01045       if (inaddrcmp(&t0, &ac0)) {
01046          ast_log(LOG_DEBUG, "Oooh, '%s' changed end address to %s:%d\n", 
01047             c0->name, ast_inet_ntoa(t0.sin_addr), ntohs(t0.sin_port));
01048          ast_log(LOG_DEBUG, "Oooh, '%s' was %s:%d\n", 
01049             c0->name, ast_inet_ntoa(ac0.sin_addr), ntohs(ac0.sin_port));
01050          memcpy(&ac0, &t0, sizeof(ac0));
01051       }
01052       who = ast_waitfor_n(cs, 2, &to);
01053       if (!who) {
01054          ast_log(LOG_DEBUG, "Ooh, empty read...\n");
01055          /* check for hangup / whentohangup */
01056          if (ast_check_hangup(c0) || ast_check_hangup(c1))
01057             break;
01058          continue;
01059       }
01060       f = ast_read(who);
01061       if (!f) {
01062          *fo = f;
01063          *rc = who;
01064          ast_log(LOG_DEBUG, "Oooh, got a %s\n", f ? "digit" : "hangup");
01065          /* That's all we needed */
01066          return 0;
01067       } else {
01068          if (f->frametype == AST_FRAME_MODEM) {
01069             /* Forward T.38 frames if they happen upon us */
01070             if (who == c0) {
01071                ast_write(c1, f);
01072             } else if (who == c1) {
01073                ast_write(c0, f);
01074             }
01075          }
01076          ast_frfree(f);
01077       }
01078       /* Swap priority. Not that it's a big deal at this point */
01079       cs[2] = cs[0];
01080       cs[0] = cs[1];
01081       cs[1] = cs[2];
01082    }
01083    return -1;
01084 }
01085 
01086 static int udptl_do_debug_ip(int fd, int argc, char *argv[])
01087 {
01088    struct hostent *hp;
01089    struct ast_hostent ahp;
01090    int port;
01091    char *p;
01092    char *arg;
01093 
01094    port = 0;
01095    if (argc != 4)
01096       return RESULT_SHOWUSAGE;
01097    arg = argv[3];
01098    p = strstr(arg, ":");
01099    if (p) {
01100       *p = '\0';
01101       p++;
01102       port = atoi(p);
01103    }
01104    hp = ast_gethostbyname(arg, &ahp);
01105    if (hp == NULL)
01106       return RESULT_SHOWUSAGE;
01107    udptldebugaddr.sin_family = AF_INET;
01108    memcpy(&udptldebugaddr.sin_addr, hp->h_addr, sizeof(udptldebugaddr.sin_addr));
01109    udptldebugaddr.sin_port = htons(port);
01110    if (port == 0)
01111       ast_cli(fd, "UDPTL Debugging Enabled for IP: %s\n", ast_inet_ntoa(udptldebugaddr.sin_addr));
01112    else
01113       ast_cli(fd, "UDPTL Debugging Enabled for IP: %s:%d\n", ast_inet_ntoa(udptldebugaddr.sin_addr), port);
01114    udptldebug = 1;
01115    return RESULT_SUCCESS;
01116 }
01117 
01118 static int udptl_do_debug(int fd, int argc, char *argv[])
01119 {
01120    if (argc != 2) {
01121       if (argc != 4)
01122          return RESULT_SHOWUSAGE;
01123       return udptl_do_debug_ip(fd, argc, argv);
01124    }
01125    udptldebug = 1;
01126    memset(&udptldebugaddr,0,sizeof(udptldebugaddr));
01127    ast_cli(fd, "UDPTL Debugging Enabled\n");
01128    return RESULT_SUCCESS;
01129 }
01130 
01131 static int udptl_nodebug(int fd, int argc, char *argv[])
01132 {
01133    if (argc != 3)
01134       return RESULT_SHOWUSAGE;
01135    udptldebug = 0;
01136    ast_cli(fd,"UDPTL Debugging Disabled\n");
01137    return RESULT_SUCCESS;
01138 }
01139 
01140 static char debug_usage[] =
01141   "Usage: udptl debug [ip host[:port]]\n"
01142   "       Enable dumping of all UDPTL packets to and from host.\n";
01143 
01144 static char nodebug_usage[] =
01145   "Usage: udptl debug off\n"
01146   "       Disable all UDPTL debugging\n";
01147 
01148 static struct ast_cli_entry cli_udptl_no_debug = {
01149    { "udptl", "no", "debug", NULL },
01150    udptl_nodebug, NULL,
01151    NULL };
01152 
01153 static struct ast_cli_entry cli_udptl[] = {
01154    { { "udptl", "debug", NULL },
01155    udptl_do_debug, "Enable UDPTL debugging",
01156    debug_usage },
01157 
01158    { { "udptl", "debug", "ip", NULL },
01159    udptl_do_debug, "Enable UDPTL debugging on IP",
01160    debug_usage },
01161 
01162    { { "udptl", "debug", "off", NULL },
01163    udptl_nodebug, "Disable UDPTL debugging",
01164    nodebug_usage, NULL, &cli_udptl_no_debug },
01165 };
01166 
01167 void ast_udptl_reload(void)
01168 {
01169    struct ast_config *cfg;
01170    const char *s;
01171 
01172    udptlstart = 4500;
01173    udptlend = 4999;
01174    udptlfectype = 0;
01175    udptlfecentries = 0;
01176    udptlfecspan = 0;
01177    udptlmaxdatagram = 0;
01178 
01179    if ((cfg = ast_config_load("udptl.conf"))) {
01180       if ((s = ast_variable_retrieve(cfg, "general", "udptlstart"))) {
01181          udptlstart = atoi(s);
01182          if (udptlstart < 1024)
01183             udptlstart = 1024;
01184          if (udptlstart > 65535)
01185             udptlstart = 65535;
01186       }
01187       if ((s = ast_variable_retrieve(cfg, "general", "udptlend"))) {
01188          udptlend = atoi(s);
01189          if (udptlend < 1024)
01190             udptlend = 1024;
01191          if (udptlend > 65535)
01192             udptlend = 65535;
01193       }
01194       if ((s = ast_variable_retrieve(cfg, "general", "udptlchecksums"))) {
01195 #ifdef SO_NO_CHECK
01196          if (ast_false(s))
01197             nochecksums = 1;
01198          else
01199             nochecksums = 0;
01200 #else
01201          if (ast_false(s))
01202             ast_log(LOG_WARNING, "Disabling UDPTL checksums is not supported on this operating system!\n");
01203 #endif
01204       }
01205       if ((s = ast_variable_retrieve(cfg, "general", "T38FaxUdpEC"))) {
01206          if (strcmp(s, "t38UDPFEC") == 0)
01207             udptlfectype = 2;
01208          else if (strcmp(s, "t38UDPRedundancy") == 0)
01209             udptlfectype = 1;
01210       }
01211       if ((s = ast_variable_retrieve(cfg, "general", "T38FaxMaxDatagram"))) {
01212          udptlmaxdatagram = atoi(s);
01213          if (udptlmaxdatagram < 0)
01214             udptlmaxdatagram = 0;
01215          if (udptlmaxdatagram > LOCAL_FAX_MAX_DATAGRAM)
01216             udptlmaxdatagram = LOCAL_FAX_MAX_DATAGRAM;
01217       }
01218       if ((s = ast_variable_retrieve(cfg, "general", "UDPTLFECentries"))) {
01219          udptlfecentries = atoi(s);
01220          if (udptlfecentries < 0)
01221             udptlfecentries = 0;
01222          if (udptlfecentries > MAX_FEC_ENTRIES)
01223             udptlfecentries = MAX_FEC_ENTRIES;
01224       }
01225       if ((s = ast_variable_retrieve(cfg, "general", "UDPTLFECspan"))) {
01226          udptlfecspan = atoi(s);
01227          if (udptlfecspan < 0)
01228             udptlfecspan = 0;
01229          if (udptlfecspan > MAX_FEC_SPAN)
01230             udptlfecspan = MAX_FEC_SPAN;
01231       }
01232       ast_config_destroy(cfg);
01233    }
01234    if (udptlstart >= udptlend) {
01235       ast_log(LOG_WARNING, "Unreasonable values for UDPTL start/end\n");
01236       udptlstart = 4500;
01237       udptlend = 4999;
01238    }
01239    if (option_verbose > 1)
01240       ast_verbose(VERBOSE_PREFIX_2 "UDPTL allocating from port range %d -> %d\n", udptlstart, udptlend);
01241 }
01242 
01243 void ast_udptl_init(void)
01244 {
01245    ast_cli_register_multiple(cli_udptl, sizeof(cli_udptl) / sizeof(struct ast_cli_entry));
01246    ast_udptl_reload();
01247 }

Generated on Wed Mar 4 19:58:15 2009 for Asterisk - the Open Source PBX by  doxygen 1.4.7